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Key points

• European funded project with a consortium of 12 enterprises and 

universities around EU

• Objective is to apply ML algorithm to system operation

• Our focus is to analyze telemetries coming from edge data centers and 

identify the best edge on which moving 5G user plane

• Leverage on 5G network slice for minimizing latency and for obtaining the 

best end user experience
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5G Core Network Architecture
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MLSysOps overview
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The use case aims to 

optimize latency in the 

5G user plane by 

applying Machine 

Learning to 

infrastructure metrics 

and automating 

system operations



Metrics evaluated

• We kept a platform agnostic approach, so we didn’t use UPF metrics that can vary between 
UPF vendors

• For this reason an agent runs on a separated VM located in the same environment of UPF 
and measures:
▪ CPU usage [%]

▪ Memory usage [%]

▪ Disk usage [%]

▪ Net in/out absolute [kbps]

▪ Net in/out [%]

▪ Latency min/max/avg/mdev [ms]

▪ Packet loss [%]

• Total bandwidth is statically configured in the Agent

• Agent uses the same network interface of the UPF, so that measurements are reliable
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Agents

• Deployed an agent co-located with each UPF

• The agents are programmed in Python and use different software modules 
for metrics collection.

• Each agent collects metrics at configurable intervals and sends them to a 
REST API, including agent ID and timestamp.

• The collector ensures data consistency and aggregates metrics from all 
agents based on ID and timestamps.

• Once all measurements are received for a specific interval, the aggregated 
data is sent to the ML algorithm for decision-making. A local copy of the 
data is also saved.
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Reinforcement Learning Methodology
• Edge Nodes: The key geographical sites for this study are 

the data centers in Milan, Rome, and Cosenza, representing 
diverse network conditions.

• Dataset: Collected from multiple data centers, simulating 
varied traffic profiles (e.g., Night, Busy Hour, Daytime) and 
introducing real-world constraints like bandwidth caps and 
packet loss.

• Goal: To minimize latency while balancing other KPIs such 
as CPU and memory utilization across edge nodes.

• RL Agent Design: The agent’s task is to select the optimal 
data center for minimizing latency, considering various 
network performance features:

▪ Latency (average, mean deviation [ms]) 

▪ CPU, memory, and disk usage [%]

▪ Network traffic (net in, net out, packet loss [%])

• Reward Function: The agent's reward is calculated based 
on a weighted sum of key KPIs, prioritizing latency and 
packet loss.
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RL Algorithms for 5G Network Optimization
• RL architectures: 

1. Deep Q-Network (DQN), 

2. Proximal Policy Optimization (PPO), 

3. Advantage Actor-Critic (A2C).

• RL Environment: Developed using Python’s Gymnasium library.

• Key Elements:

▪ Environment definition tries to follow the main rules of the 5G network. 

▪ Each of the three edges shares data with the gNodeB at the same time. 

▪ Each model was trained using real-time data traffic and fine-tuned through:

✓ Learning rate

✓ Batch size

✓ Discount factor (γ)

Observation space
A matrix of 3 rows corresponding to the 3 edges measurements are used 

as observation state. Each observation contains data from each edge, 

e.g. Latency1, Latency2, Latency3, CPU1, CPU2, …, …, PacketLoss1, …

Action space
Selection of an edge node (Milan, Rome, Cosenza).
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Results and Evaluation
• DQN emerged as the most effective algorithm, achieving the highest performance with a 

maximum reward of 338 and stable convergence.

▪ Best configuration: Learning rate = 0.001, γ = 0.45, Batch size = 256.

• PPO and A2C models demonstrated slower or unstable convergence, indicating they are 
less suited to the task compared to DQN.
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New RL Training Strategies to avoid Overfitting

1. Optimization of UPF Selection Criteria
The implemented constraints for UPF selection are: 

• CPU Usage: must remain below 90% threshold

• Packet Loss: new UPF must ensure a minimum 20% reduction compared to previous UPF

2. Reward System Refinement
The agent’s reward system has been enhanced considering:

• Performance Metrics
o Latency:

▪ Positive reward if below dataset mean

▪ Penalty if above

o Packet Loss:
▪ Positive reward if below dataset mean

▪ Penalty if above

• Selection Accuracy
o Significant bonus if selected UPF matches optimal target index
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Conclusions
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• Deep Q-Network (DQN) proves highly effective in reducing 
latency with stable reward convergence, leveraging new RL 
training strategies like UPF selection constraints and a refined 
reward system for robust performance across varied traffic 
conditions. 

• The system's success is validated through real-time telemetry 
and hand-labeled data. Here are the results on user experience 
before and after the ML algorithm decision.

• ML estimated in few seconds that UPF 1 would have the best set 
of infrastructure values in order to optimize latency and packet 
loss.

• Human decision would have been not feasible in real world 
because of many parameters to be evaluated in changing traffic 
condition.

• Future efforts will focus on optimizing latency in Edge-Cloud 
Continuum interactions and adapting to diverse data center 
scenarios.

BEFORE AFTER
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Demo
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• Device connected to 5G SA environment associated to a defined network slice

• The network slice is bound to a specific UPF that, in this case, has bad network 
conditions 

• Agents collects metrics and feed the ML algorithm which makes a decision about 
UPF change

• UPF change is done by leveraging on 5G network slice

• End user latency is improved

Demo link: https://youtu.be/EujiS2twBvI

https://youtu.be/EujiS2twBvI
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