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Introduction

• Cyber-Physical Systems (CPS) and Industrial Internet of Things (IIoT) are revolutionizing industrial 
automation by integrating real-time data sensing, transmission, and analytics.

• A key component enabling these technologies is the Edge-Cloud continuum, optimizing data 
processing between edge devices and cloud systems.

• 5G networks serve as the backbone, providing high-speed connectivity essential for real-time 
industrial operations and smart manufacturing.
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Problem Definition

• Real-time data exchange is crucial for Industry 4.0 
applications, where delays can negatively impact 
automation and dynamic process adjustments.

• Reducing latency between the gNodeB Radio Access 
Network (RAN) and User Plane Function (UPF) is 
critical for effective operation in 5G networks.

• This study focuses on developing methodologies for 
optimizing 5G network performance, with an 
emphasis on latency reduction through 
Reinforcement Learning (RL) techniques.
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Network Architecture and Dataset Overview

• Edge Nodes: The key geographical sites for this study are the data centers in Milan, Rome, and 
Cosenza, representing diverse network conditions.

• Dataset: Data was collected from multiple data centers, simulating varied traffic profiles (e.g., Night, 
Busy Hour, Daytime) and introducing real-world constraints like bandwidth caps and packet loss.

5



Reinforcement Learning Methodology
• Goal: To minimize latency while balancing other KPIs 

such as CPU and memory utilization across edge nodes.

• RL Agent Design: The agent’s task is to select the 
optimal data center for minimizing latency, considering 
various network performance features:

▪ Latency (average, mean deviation [ms]) 

▪ CPU, memory, and disk usage [%]

▪ Network traffic (net in, net out, packet loss [%])

• Reward Function: The agent's reward is calculated 
based on a weighted sum of key KPIs, prioritizing 
latency and packet loss.
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RL Environment
• Framework: Developed using Python’s Gymnasium library.

• Key Elements:
▪ Environment definition tries to follow the main rules of the 5G network. 

▪ Each of the three edges shares data with the gNodeB at the same time. 
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Observation space
Real-time metrics from the dataset.
Each observation contains data from each edge, e.g. Latency1, 
Latency2, Latency3, CPU1, CPU2, …, …, PacketLoss1, …

Action space
Selection of an edge node (Milan, Rome, Cosenza).

Reward function
Based on the efficiency of the selected edge node in 
minimizing latency and maintaining balance across KPIs.
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RL Algorithms for 5G Network Optimization
• Three RL architectures were tested: 

▪ Deep Q-Network (DQN), 

▪ Proximal Policy Optimization (PPO), 

▪ Advantage Actor-Critic (A2C).

• Each model was trained using real-time data traffic and optimized through 
different hyperparameters:
▪ Learning rate

▪ Batch size

▪ Discount factor (γ)
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A matrix of three rows corresponding to the three edges 
measurements are used as observation state.



Results and Evaluation
• DQN emerged as the most effective algorithm, achieving the highest performance with a 

maximum reward of 338 and stable convergence.
▪ Best configuration: Learning rate = 0.001, γ = 0.45, Batch size = 256.

• PPO and A2C models demonstrated slower or unstable convergence, indicating they are less 
suited to the task compared to DQN.
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Conclusion

• DQN is the preferred model for optimizing 5G network latency in CPS and IIoT environments, 
showing potential for real-time applications in smart manufacturing.

• Future works will focus on
▪ Refinements of the models: exploring more diverse data center conditions and further reducing latency in 

edge-cloud interactions.

▪ Sustainability: minimizing energy consumption and using green energy sources align with global sustainability 
goals and industry standards for low-carbon operations.

Takeaways
• The integration of RL techniques in 5G networks offers a robust solution for latency optimization, 

critical for the success of Industry 4.0 applications.

• DQN provides the best balance between reward convergence and network performance in this study, 
proving its efficacy for low-latency, high-performance industrial operations.
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