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CHRISTOS ANTONOPOULOS

Professor in the Department of Electrical and Computer
Engineering at the University of Thessaly and Director of its
Computer Systems Lab.

Research focus on system software and software optimization
for cloud, high-performance, and embedded systems,
approximate computing, and edge computing.

Authored 80+ publications (4 best paper awards).

Coordinated and contributed to major national and EU projects
and has served as a scientific advisor to CNH Industrial on Al
and computational challenges related to smart/precision
agriculture.
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THE TREND

Continuum systems

* Applications are moving outside the cloud

* Start involving nodes and resources toward or directly at the edge of
the Internet...

* ... including powerful but also resource-constrained loT devices
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THE CHALLENGES
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Heterogeneity

Impossible to monitor/manage
Volatility by a human
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ARE AI/ML METHODS FOR AUTONOMIC
SYSTEM MANAGEMENT AND
CONFIGURATION IN THE CLOUD-EDGE-IOT
CONTINUUM A FEASIBLE SOLUTION?
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MLSysOps Instantiation
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ML Models

°* ML models may become outdated; adapt to a changing world/conditions

* Reinforcement learning (RL)

* Do not train from scratch for each new setup; reuse and adapt pre-trained
models

* Transfer learning (TL)

* Privacy-preserving and distributed/scalable training

* Federated Learning (FL) & Split Federated Learning (SFL)

* ML models (and their training) can be deployed as special applications
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Use Cases
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ML for System Management

Three success scenarios
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Can we do better with ML-based resource
management for the Cloud?
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Solution Overview

* Node-level ML model
* Runs locally on each node

* Predicts future CPU utilization and VM
lifetime

* Drives VM management decisions

* Cluster agent
* Receives predictor output

* Applies a heuristic to globally optimize

cluster resources
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Results

° Migration counts

* Decrease of 41.33% compared with SOTA conventional (non-ML)
policy

* Only 7.5% over oracle (Ground Truth)

* SLO violations
° Lower by 34.98% compared with SoTA conventional policy

°* Amere 1.1% more than oracle (Ground Truth)
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But do we have to train from scratch for
each target cluster?
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Transferring DRL Agents Between

Infrastructures
* Trained DRL agents for 4 different cluster sizes (4, 8, 16, 32 nodes)

* Transferred agents between clusters and compared with training from
scratch

* Pre-trained agents consistently outperformed agents trained from
scratch when comparing performance over the same training duration

* Performance improved by up to 54%

* In some cases, pre-trained agents outperformed the converged from-scratch
performance in less than 25% of the training time
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Transferring Learning Insights

° Insight 1: Larger clusters benefit the most from transfer
learning

* Insight 2: Source-target cluster size similarity matters

° Insight 3: Small-to-large transfers are more effective than the
reverse
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Can ML improve security at the edge?
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Why is device authentication necessary?

~~ 10T explosion with 30+ billion devices expected in 2025 across smart homes,
healthcare, and industrial sectors.

@ Unsecured devices become prime targets for sophisticated cyber attacks.

. Unauthorized access leading to critical data breaches and system
compromises.

i# Device spoofing enabling dangerous Man-in-the-Middle attacks.

@ Vulnerable devices being hijacked for large-scale DDoS botnet attacks.

I Increasing complexity of cyber threats targeting connected devices.
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Solution

* Using multiparametric Physical-Level Authentication (PLA), on top of cryptographic
authentication solutions
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* Based on unique physical characteristics of the communication subsystem.

(a): Carrier Frequency Offset  (b): Direct Current (DC) Offset (c): Phase Offset
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Post-Processing
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Results

* 95% - 98% malicious devices detection rate.

* Even with large number and diverse characteristics of malicious
devices...

* ... and for varying SNR levels.

* Mean inference time: 3.75ms.

* Energy consumption: < 25.5mJ.
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Coming Soon...
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Open-Source Release

https://github.com/mlsysops-eu/mlsysops-framework

* Open-source components of the MLSysOps framework
(late 6/2025)

* Orchestrators

* Runtimes (sandboxed & generic)

* Agent templates (continuum, cluster, node)
* Policy

* ML Connector
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Hackathon & HiPEAC Workshop

* Hackathon organization (9/2025, University of
Calabria, Rende, Italy)

* Familiarize developers with the MLSysOps framework

* Foster application & ML models development

* Workshop organization (ML4ECS - HiPEAC 2026)
* https://ml4ecs.e-ce.uth.gr/
* Edgeless + CODECO + MLSysOps

DATAWEEK

JOIN.LEARN.SHARE.GET VALUE


https://ml4ecs.e-ce.uth.gr/
https://ml4ecs.e-ce.uth.gr/
https://ml4ecs.e-ce.uth.gr/
https://ml4ecs.e-ce.uth.gr/

Thank youl!

https://mlsysops.eu

mlsysops-eu/mlsysops-framework

@mlsysops

MLSysOps

mlsysops

D580

@mlsysopsproject

Newsletter https://mlsysops.eu/communication/
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