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The University of Calabria

• Established in 1968

• Campus located on over 350K m2, with Departments, Lecture Halls, Laboratories, Libraries, Theaters, and Residential 

Centers.

• Biggest campus in Italy and one of the “greenest” in Europe

• 25.0000 students (over 1.000 are internationals)

• 800 professors

• 650 administrative personnel

• 14 Departments

• 80 Degree courses (15 delivered in English)

• 10 PhD Schools

• Technology transfer with the support of the spin-off incubator and Liaison Office

• News! UNICAL gained 50 positions in the QS ranking → ranked #901-950 in 2025!
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The SPEME Group
• Smart PErvasive and Mobile systems Engineering (SPEME)

• Part of the Department of Computer, Modelling, Electronics, and Systems Engineering (DIMES)

• 30+ people

• 8 faculty members, 

• 2 adjunct professors/researchers

• 5 PostDocs 

• 17 PhD students, 

• + several MS students and external collaborators

• Areas of expertise:

• Internet of Things

• Wearable Computing Systems

• Edge Intelligence

• Wireless Sensor Networks

• Multi-Agent Systems

• Large-scale Decentralized, Mobile and Cloud Computing

• Vehicular Area Networks

• Machine Learning

• Process Mining
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Outline
• Introduction

• A Framework for system and application deployment in 

the edge-cloud continuum

• High-level modeling

• Architecture & APIs

• Use case scenario
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Introduction

Continuum systems 

• Applications are moving outside the cloud and start 

involving nodes and resources toward or directly at the 

edge of the Internet

• including powerful but also resource-constrained IoT devices 

• Scale, heterogeneity, dynamics and complexity increases

• Practically impossible to monitor/manage by a human
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The vision of autonomic computing systems, which can manage themselves with 
little or no involvement of the application/system administrator, becomes more 

relevant than ever before! 



Application deployment architectures
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Research challenges
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Autonomic system management and configuration in the cloud-edge-

IoT continuum using AI/ML methods

• Focus on modular, distributed applications

• Comprised out of independently executable components

• Different management aspects 

• Deployment, computing, storage, communication/networking, trust

• Disassociation of management from control

• Develop AI/ML-ready (policy-neutral) mechanisms

• Take decisions using suitable ML models

• Key AI/ML properties

• Distributed / hierarchical approach 

• Continual learning / efficient model retraining

• Explainability

MLSysOps

Mechanisms 
(execution)

Intelligence 
(decisions)



Objectives
1. Deliver an open AI-ready, agent-based framework for holistic, trustworthy, scalable, 

and adaptive system operation across the heterogeneous cloud-edge continuum. 

2. Develop an AI architecture supporting explainable, efficiently retrainable ML models 

for end-to-end autonomic system operation in the cloud-edge continuum.

3. Enable efficient, flexible, and isolated execution across the heterogeneous continuum.

4. Support green, resource-efficient, and trustworthy system operation, while satisfying 

application QoS/QoE requirements.
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Concept
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Approach
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High-level modeling
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System Model

14

Fixed MobileNode
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System Model - Role
PaaS within a given slice

• Deploys, orchestrates, runs 
and adapts distributed 
applications

• Manages system 
infrastructure

• Employs ML-based 
methods

• Exploits system resources 
to enable continual and 
explainable ML alongside 
application operation
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Fixed MobileNode
Tightly-coupled 
infrastructure



Main Actors and Interactions
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Application Model

• Modular applications, consisting of components

• Components & their interactions form an application graph

• Components are typically packaged as containers
• Other enclaves – more appropriate – can be autogenerated on a case-by-case basis
• They come with:

• Resource requirements

• QoS requirements

• Different implementations may be available for select components
• Corresponding to different points in the resource requirements vs. QoS space

• Applications are specified and registered to the system via structured 
application descriptions
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Functional Model

• MF1: Management

• Monitor 

• MF2: Service & Control 

• Monitor, Analyse, Plan, Execute

• MF3: Communication & Interface

• Monitor, Execute 

• MF4: Interoperability 

• Monitor, Analyse, Plan, Execute 
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Framework architecture
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MLSysOps Agent Architecture
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Agent-based implementation

22



Agent Architecture
Agent responsibilities:

• High-Level Decision-Making

• Data Interaction and Forwarding

• Action Consistency Assessment

• Transforming Information into Action

• Model Retraining Management

• Anomaly Detection and Trust Evaluation

• Responsiveness to System Administrators' 

commands

• Transition to Conventional Techniques

• Logging for Accountability
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Agent Architecture – Inter-agent Message Types
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Message Type Examples Description Direction

Inform

Heartbeat 'Keep alive' message to notify higher-level agents of 

its current availability.

Upwards

Telemetry Process Monitoring Feedback on errors or the initiation/termination of 

telemetry streaming from lower-level agents.

Upwards

Health Status Update Details on the device's health status. Upwards

Request
Heartbeat Request Explicit heartbeat request Downwards

Perform Action Request Command to child agents to perform a specific action. Downwards

Agree
Perform Action Acknowledgement of higher-level agents’ perform 

action request.

Upwards

Refuse
Refuse to Perform Action Refusing to perform a given action requested by 

higher-level agents.

Upwards

Cancel Cancel Action Cancel the request to perform a specific action. Downwards

Failure
Failure to act. Acknowledgement to notify an action was attempted, 

but the attempt failed.

Upwards



Telemetry 
Architecture
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ML Architecture
1. The State Monitor sends the current state 

to the RL agent.

2. The RL agent chooses an action.

3. The act module translates the agent's 
action to the corresponding API call.

4. The underlying system sends the feedback 
metrics to the state monitor.

5. The Resource Dispenser collects the 
metrics, preprocesses them, cleans them, 
and sends them to the State Monitor.

6. The State Monitor creates a new state.

7. The Reward Machine calculates the reward 
and returns it to the RL agent.

8. The (state, action, reward, new action) 
tuple is saved in the experience memory.

9. Update the RL agent policy.

28WP 2



APIs
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NorthBound Interface - APIs
• A set of 16 API calls

• Used by 
• application owners 

• infrastructure administrators

30

API Call
runApp(AppDescription)
stopApp(AppDeploymentID)
listApps()
registerInfrastructure (list of ClusterDescriptions or list of 

DatacenterDescriptions or list of NodeDescriptions)
unregisterInfrastructure(list of ClusterIDs or list of DatacenterIDs or list of 

NodeIDs)
listInfrastructure(DatacenterID or ClusterID, or 0)
configTrust(list of NodeIDs, list of Indexes, list of weights)

getApplicationState(AppDeploymentID)
getApplicationPerformance(AppDeploymentID)
getNodeState(NodeID)
getDatacenterState(DatacenterID)
getClusterState(ClusterID)
setManagementMode(0[conventional], 1[ML])
GetApplicationLevelExplanations(currentConfiguration)

GetAdminLevelExplanations(currentConfiguration)

SetSystemTarget(list of clusterIDs, list of DatacenterIDs, list of NodeIDs, 

targets: [minNodeUsage, minEnergyConsumption, maxGreenEnergy])



NorthBound Interface – 
Application Description
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• Each application is a set of components
• Each component is described using:

• Placement options
• Sensor requirements
• QoS-related information
• Storage requirements
• Resource requirements



Northbound Interface – 
Infrastructure Description
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• Fixed edge node description
• General information
• Environment 
• Acceleration
• Storage
• Hardware specs
• Network resources
• Power sources



Northbound Interface – 
Infrastructure Description

35

• Sensor-equipped node description
• Sensor information



Side Interface
Initialization API

1. Request. Agent specifies the kind of ML model it needs.

2. Model description. The API returns a list of all the ML 
models that match the agent’s needs.

3. Deployment ACK. Agent picks one model and sends back a 
request to API to deploy the selected ML model.

4. Deployment instructions. The API pushes the request to the 
queue for deployment and returns a deployment ID to the 
agent.

Model use API

1. Model use. Request inferences or predictions. Input data 
will be required for this API call.

2. ML results. API returns prediction results.

3. Reward. Based on the return results and action performed, 
a reward will be returned to API to train the RL agent to 
improve its performance.
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Use case
Indoor Localization and Tracking
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Objectives

• Show how MLSysOps Agents can communicate through the layers of the 
edge-cloud continuum.

• Show the capability of MLSysOps Agents to monitor and execute commands 
to orchestrate the application microservices.

• Show the capability of MLSysOps proxy Agents to configure application 
behavior at the far edge devices. 

• Show how agents interact to adapt the computation performed to compute 
the tag locations as a function of the number of active tags.
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ESP32 UWB pro position sensor

Testbed Configuration

Raspberry Pi 3

Raspberry Pi Zero W Local server

FAR EDGE SMART EDGE EDGE INFRASTRUCTUREIoT containerized application
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ESP32 UWB pro position sensor

Agent Configuration

Raspberry Pi 3

Raspberry Pi Zero W Local server

FAR EDGE SMART EDGE EDGE INFRASTRUCTURE

NODE 
AGENT

NODE 
AGENT

PROXY 
AGENT

CLUSTER 
AGENT
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Application & infrastructure

• Indoor localization system

• anchors (radio beacons fixed in space) & tags (mobile devices)

• tag positions are obtained through trilateration

• System infrastructure

• Level I: IoT devices (anchor and tags) running custom firmware

• Level II: Raspberry hosting a MQTT broker for the communication between IoT devices and Server

• Level III: Server hosting position calculation, visualization and data storage services

44



45

m

Py. Calculation service

Server

(x,y)
TAG1

Visualization service

Token service

TAG address

TAG token

Application 
architecture and 
functionality

Processing  service

m = {TAG_ID, DIST_1, DIST_2, 
DIST_3, VOLTAGE}



46

Py. Calculation service
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Py. Calculation service
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Agent messages

Proxy agent - RPI

Node agent – RPI Cluster agent
Node agent - Server



Agent graphical interface
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Remarks

• Agents are able to exchange different messages between different layers of the 
edge-cloud continuum through XMPP service.

• As shown agents are able to monitor, analyze and execute commands to start 
and stop docker containerized services.

• Far edge devices can be integrated in the MAS by using the proxy agent.  
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Conclusions

• Optimal System Management in the Device-Edge-Cloud Continuum is

challenging

• Continuous human/manual intervention is unrealistic

• AI/ML can effectively tackle this challenge

• MLSysOps proposes a concrete framework to support application

deployment/orchestration and system operations in DEC continuum

• Agent paradigm is an effective programming approach to implement

the ML-supported mechanisms
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