
Machine Learning for System Operation and
Application Orchestration in the

IoT-Edge-Cloud Continuum
Raffaele Gravina

University of Calabria

June 29, 2024

1

About me
➢ BSc and MSc in Computer Engineering from the University of Calabria, Italy (2003, 2007)

➢ Researcher at the Wireless Sensor Network Lab - Berkeley, California (2008-2010)

➢ PhD degree in Computer and Systems Engineering from the University of Calabria (2012)

➢ PostDoc at UNICAL (2013-2015)

➢ Assistant Professor of Computer Engineering at UNICAL (2016-2022)

➢ Associate Professor at UNICAL since 2022

➢ Member of SPEME Research Group

➢ Co-founder and CTO of health-care sector at SenSysCal Srl, a spin-off which develops Internet-of-Things and sensor-based

m-Health

➢ Research interests:

➢ Wearable Computing Systems

➢ Internet of Things

➢ Pattern Recognition and Machine Learning

➢ Device-Edge-Cloud Continuum 2

The University of Calabria

• Established in 1968

• Campus located on over 350K m2, with Departments, Lecture Halls, Laboratories, Libraries, Theaters, and Residential

Centers.

• Biggest campus in Italy and one of the “greenest” in Europe

• 25.0000 students (over 1.000 are internationals)

• 800 professors

• 650 administrative personnel

• 14 Departments

• 80 Degree courses (15 delivered in English)

• 10 PhD Schools

• Technology transfer with the support of the spin-off incubator and Liaison Office

• News! UNICAL gained 50 positions in the QS ranking → ranked #901-950 in 2025!
3

The SPEME Group
• Smart PErvasive and Mobile systems Engineering (SPEME)

• Part of the Department of Computer, Modelling, Electronics, and Systems Engineering (DIMES)

• 30+ people

• 8 faculty members,

• 2 adjunct professors/researchers

• 5 PostDocs

• 17 PhD students,

• + several MS students and external collaborators

• Areas of expertise:

• Internet of Things

• Wearable Computing Systems

• Edge Intelligence

• Wireless Sensor Networks

• Multi-Agent Systems

• Large-scale Decentralized, Mobile and Cloud Computing

• Vehicular Area Networks

• Machine Learning

• Process Mining

4

Website:
https://speme.dimes.unical.it

https://speme.dimes.unical.it/

Outline
• Introduction

• A Framework for system and application deployment in

the edge-cloud continuum

• High-level modeling

• Architecture & APIs

• Use case scenario

5

Introduction

Continuum systems

• Applications are moving outside the cloud and start

involving nodes and resources toward or directly at the

edge of the Internet

• including powerful but also resource-constrained IoT devices

• Scale, heterogeneity, dynamics and complexity increases

• Practically impossible to monitor/manage by a human

6

The vision of autonomic computing systems, which can manage themselves with
little or no involvement of the application/system administrator, becomes more

relevant than ever before!

Application deployment architectures

7

Research challenges

8

Autonomic system management and configuration in the cloud-edge-

IoT continuum using AI/ML methods

• Focus on modular, distributed applications

• Comprised out of independently executable components

• Different management aspects

• Deployment, computing, storage, communication/networking, trust

• Disassociation of management from control

• Develop AI/ML-ready (policy-neutral) mechanisms

• Take decisions using suitable ML models

• Key AI/ML properties

• Distributed / hierarchical approach

• Continual learning / efficient model retraining

• Explainability

MLSysOps

Mechanisms
(execution)

Intelligence
(decisions)

Objectives
1. Deliver an open AI-ready, agent-based framework for holistic, trustworthy, scalable,

and adaptive system operation across the heterogeneous cloud-edge continuum.

2. Develop an AI architecture supporting explainable, efficiently retrainable ML models

for end-to-end autonomic system operation in the cloud-edge continuum.

3. Enable efficient, flexible, and isolated execution across the heterogeneous continuum.

4. Support green, resource-efficient, and trustworthy system operation, while satisfying

application QoS/QoE requirements.
9

10

Concept

11

Execute

M
o
ni
to
r

Management Plane
Conventional resource provisioning, deployment & orchestration mechanisms (computing, storage & networking)

C
o

m
p

u
te

,

C
P

U
 C

o
n

fi
gu

ra
ti

o
n

,
A

cc
el

e
ra

to
r

su
p

p
o

rt

St
o

ra
ge

N
e

tw
o

rk

(f
a

r-
e

d
ge

, 5
G

, o
p

ti
ca

l)

Tr
u

st
 /

 S
e

cu
ri

ty

E
n

cl
a

ve
s

fo
r

Fl
e

xi
b

le
 D

ep
lo

ym
en

t

Application

descriptions,
intents, QoS/QoE

Infrastructure

as Code
descriptions

Platform

Administrator
Intents

Pluggable ML

Ex
p

la
in

ab
ili

ty

C
o

n
tin

u
al

Le
arn

in
g

AI-ready management mechanisms Enabling technology

Analyse - Plan

Cloud InfrastructureSmart EdgeFar Edge Edge Infrastructure

M
o

n
it

o
ri

n
g

MAPE
Loop

Approach

12

Far Edge Smart Edge Edge Infrastructure Cloud Infrastructure

CLUSTER LEVEL

NODE LEVEL

CONTINUUM

Sensor, Compute &
Storage Management

Sensor, Compute,
Storage, Network &

Security Management

Compute, Storage &
Network Management

Compute, Storage &
Network Management

High-level
Management

Sensor, Compute &
Storage Management

Compute & Storage
Management

Compute & Storage
Management

AI
Agent

AI-driven

MAPE
loop

High-level intents

Specific resource
requirements

Detailed telemetry
information

High-level feedback

proxy

A
I –

D
ri

ve
n

 A
sp

e
ct

s

High-level modeling

13

System Model

14

Fixed MobileNode
Tightly-coupled
infrastructure

System Model - Role
PaaS within a given slice

• Deploys, orchestrates, runs
and adapts distributed
applications

• Manages system
infrastructure

• Employs ML-based
methods

• Exploits system resources
to enable continual and
explainable ML alongside
application operation

15

Fixed MobileNode
Tightly-coupled
infrastructure

Main Actors and Interactions

16

infrastructure
provider

application
developer

p
ro

vides

produces

Telemetry
API

MLSysOps Framework

used by

Application
Components

Application
Description

Application
Description
Language

System
Description
Language

d
efin

es

used by

System
Description

produces

registered
with

Side API

d
efin

es

ML model
developer

used by

produces

ML model
DescriptionML model

registered
with

registered
with

d
efin

es

used by

Application Model

• Modular applications, consisting of components

• Components & their interactions form an application graph

• Components are typically packaged as containers
• Other enclaves – more appropriate – can be autogenerated on a case-by-case basis
• They come with:

• Resource requirements

• QoS requirements

• Different implementations may be available for select components
• Corresponding to different points in the resource requirements vs. QoS space

• Applications are specified and registered to the system via structured
application descriptions

17

Functional Model

• MF1: Management

• Monitor

• MF2: Service & Control

• Monitor, Analyse, Plan, Execute

• MF3: Communication & Interface

• Monitor, Execute

• MF4: Interoperability

• Monitor, Analyse, Plan, Execute

18

Framework architecture

19

20

MLSysOps Agent Architecture

Telemetry
ArchitectureDeployment &

Orchestration
Architecture

Northbound API

Special Infrastructure
management (Optical

network, 5G UPF Placement)

Anomaly detection

Trust assessment & management

Hardware Configuration

Container Runtime with Acceleration
capabilities

Storage

Si
d

e
A

PI

Southbound API

Machine
Learning
Models

MLSysOps Software Architecture

21

MLSysOps
Hierarchy

MLSysOps

Node Agent

MLSysOps

Cluster Agent

MLSysOps

Continuum

Agent

Orchestration

Service Node-level

Telemetry

Cluster

Orchestrator Cluster-level

Telemetry

Continuum-level

Telemetry

Continuum

Orchestrator
Continuum

level

Cluster

level

Node & Far-edge

Node level

System Actors

Orchestration commands

User interactions

Telemetry data

MLSysOps Commands

Agent protocol

ML

Configuration
Knobs

ML

ML

Agent-based implementation

22

Agent Architecture
Agent responsibilities:

• High-Level Decision-Making

• Data Interaction and Forwarding

• Action Consistency Assessment

• Transforming Information into Action

• Model Retraining Management

• Anomaly Detection and Trust Evaluation

• Responsiveness to System Administrators'

commands

• Transition to Conventional Techniques

• Logging for Accountability

23

Agent Architecture – Inter-agent Message Types

24

Message Type Examples Description Direction

Inform

Heartbeat 'Keep alive' message to notify higher-level agents of

its current availability.

Upwards

Telemetry Process Monitoring Feedback on errors or the initiation/termination of

telemetry streaming from lower-level agents.

Upwards

Health Status Update Details on the device's health status. Upwards

Request
Heartbeat Request Explicit heartbeat request Downwards

Perform Action Request Command to child agents to perform a specific action. Downwards

Agree
Perform Action Acknowledgement of higher-level agents’ perform

action request.

Upwards

Refuse
Refuse to Perform Action Refusing to perform a given action requested by

higher-level agents.

Upwards

Cancel Cancel Action Cancel the request to perform a specific action. Downwards

Failure
Failure to act. Acknowledgement to notify an action was attempted,

but the attempt failed.

Upwards

Telemetry
Architecture

27

ML Architecture
1. The State Monitor sends the current state

to the RL agent.

2. The RL agent chooses an action.

3. The act module translates the agent's
action to the corresponding API call.

4. The underlying system sends the feedback
metrics to the state monitor.

5. The Resource Dispenser collects the
metrics, preprocesses them, cleans them,
and sends them to the State Monitor.

6. The State Monitor creates a new state.

7. The Reward Machine calculates the reward
and returns it to the RL agent.

8. The (state, action, reward, new action)
tuple is saved in the experience memory.

9. Update the RL agent policy.

28WP 2

APIs

29

NorthBound Interface - APIs
• A set of 16 API calls

• Used by
• application owners

• infrastructure administrators

30

API Call
runApp(AppDescription)
stopApp(AppDeploymentID)
listApps()
registerInfrastructure (list of ClusterDescriptions or list of

DatacenterDescriptions or list of NodeDescriptions)
unregisterInfrastructure(list of ClusterIDs or list of DatacenterIDs or list of

NodeIDs)
listInfrastructure(DatacenterID or ClusterID, or 0)
configTrust(list of NodeIDs, list of Indexes, list of weights)

getApplicationState(AppDeploymentID)
getApplicationPerformance(AppDeploymentID)
getNodeState(NodeID)
getDatacenterState(DatacenterID)
getClusterState(ClusterID)
setManagementMode(0[conventional], 1[ML])
GetApplicationLevelExplanations(currentConfiguration)

GetAdminLevelExplanations(currentConfiguration)

SetSystemTarget(list of clusterIDs, list of DatacenterIDs, list of NodeIDs,

targets: [minNodeUsage, minEnergyConsumption, maxGreenEnergy])

NorthBound Interface –
Application Description

31

• Each application is a set of components
• Each component is described using:

• Placement options
• Sensor requirements
• QoS-related information
• Storage requirements
• Resource requirements

Northbound Interface –
Infrastructure Description

34

• Fixed edge node description
• General information
• Environment
• Acceleration
• Storage
• Hardware specs
• Network resources
• Power sources

Northbound Interface –
Infrastructure Description

35

• Sensor-equipped node description
• Sensor information

Side Interface
Initialization API

1. Request. Agent specifies the kind of ML model it needs.

2. Model description. The API returns a list of all the ML
models that match the agent’s needs.

3. Deployment ACK. Agent picks one model and sends back a
request to API to deploy the selected ML model.

4. Deployment instructions. The API pushes the request to the
queue for deployment and returns a deployment ID to the
agent.

Model use API

1. Model use. Request inferences or predictions. Input data
will be required for this API call.

2. ML results. API returns prediction results.

3. Reward. Based on the return results and action performed,
a reward will be returned to API to train the RL agent to
improve its performance.

39

Use case
Indoor Localization and Tracking

40

Objectives

• Show how MLSysOps Agents can communicate through the layers of the
edge-cloud continuum.

• Show the capability of MLSysOps Agents to monitor and execute commands
to orchestrate the application microservices.

• Show the capability of MLSysOps proxy Agents to configure application
behavior at the far edge devices.

• Show how agents interact to adapt the computation performed to compute
the tag locations as a function of the number of active tags.

41

ESP32 UWB pro position sensor

Testbed Configuration

Raspberry Pi 3

Raspberry Pi Zero W Local server

FAR EDGE SMART EDGE EDGE INFRASTRUCTUREIoT containerized application

42

ESP32 UWB pro position sensor

Agent Configuration

Raspberry Pi 3

Raspberry Pi Zero W Local server

FAR EDGE SMART EDGE EDGE INFRASTRUCTURE

NODE
AGENT

NODE
AGENT

PROXY
AGENT

CLUSTER
AGENT

43

Application & infrastructure

• Indoor localization system

• anchors (radio beacons fixed in space) & tags (mobile devices)

• tag positions are obtained through trilateration

• System infrastructure

• Level I: IoT devices (anchor and tags) running custom firmware

• Level II: Raspberry hosting a MQTT broker for the communication between IoT devices and Server

• Level III: Server hosting position calculation, visualization and data storage services

44

45

m

Py. Calculation service

Server

(x,y)
TAG1

Visualization service

Token service

TAG address

TAG token

Application
architecture and
functionality

Processing service

m = {TAG_ID, DIST_1, DIST_2,
DIST_3, VOLTAGE}

46

Py. Calculation service

Server

Visualization service

Node
Agent

Proxy
Agent

Cluster
Agent

Node
Agent

Py. Processing service

Analyze

Execute

Monitoring

Communication far
edge nodes

47

Py. Calculation service

Server

(x,y)
TAG1

(x,y)
TAG 2

(x,y)
TAG3

Visualization service

Node
Agent

ProxyA
gent

Cluster
Agent

Node
Agent

(x,y)
TAG4

(x,y)
TAG5

m
TAG1

m
TAG2

m
TAG3

m
TAG4

m
TAG5

Stop py.

msg

Py. Processing service

47

Analyze

Execute

Monitoring

Communication far
edge nodes

Note: Demo threshold → 7 connections

ON

OFF

48

Agent messages

Proxy agent - RPI

Node agent – RPI Cluster agent
Node agent - Server

Agent graphical interface

49

Remarks

• Agents are able to exchange different messages between different layers of the
edge-cloud continuum through XMPP service.

• As shown agents are able to monitor, analyze and execute commands to start
and stop docker containerized services.

• Far edge devices can be integrated in the MAS by using the proxy agent.

50

Conclusions

• Optimal System Management in the Device-Edge-Cloud Continuum is

challenging

• Continuous human/manual intervention is unrealistic

• AI/ML can effectively tackle this challenge

• MLSysOps proposes a concrete framework to support application

deployment/orchestration and system operations in DEC continuum

• Agent paradigm is an effective programming approach to implement

the ML-supported mechanisms

51

52

THANKS!
Q&A

The research leading to these results has received

funding from the European Community's Horizon

Europe Programme under the MLSysOps Project,

grant agreement #101092912.

	Slide 1: Machine Learning for System Operation and Application Orchestration in the IoT-Edge-Cloud Continuum
	Slide 2: About me
	Slide 3: The University of Calabria
	Slide 4: The SPEME Group
	Slide 5: Outline
	Slide 6: Introduction
	Slide 7: Application deployment architectures
	Slide 8: Research challenges
	Slide 9: Objectives
	Slide 10
	Slide 11: Concept
	Slide 12: Approach
	Slide 13: High-level modeling
	Slide 14: System Model
	Slide 15: System Model - Role
	Slide 16: Main Actors and Interactions
	Slide 17: Application Model
	Slide 18: Functional Model
	Slide 19: Framework architecture
	Slide 20: MLSysOps Software Architecture
	Slide 21: MLSysOps Hierarchy
	Slide 22: Agent-based implementation
	Slide 23: Agent Architecture
	Slide 24: Agent Architecture – Inter-agent Message Types
	Slide 27: Telemetry Architecture
	Slide 28: ML Architecture
	Slide 29: APIs
	Slide 30: NorthBound Interface - APIs
	Slide 31: NorthBound Interface – Application Description
	Slide 34: Northbound Interface – Infrastructure Description
	Slide 35: Northbound Interface – Infrastructure Description
	Slide 39: Side Interface
	Slide 40: Use case Indoor Localization and Tracking
	Slide 41: Objectives
	Slide 42
	Slide 43
	Slide 44: Application & infrastructure
	Slide 45
	Slide 46
	Slide 47
	Slide 48: Agent messages
	Slide 49: Agent graphical interface
	Slide 50: Remarks
	Slide 51: Conclusions
	Slide 52

