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What is Federated Learning?

- Federated learning (FL)

Learned model:
personal healthcare

Global model
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FL vs. Distributed Learning

* Non — independent and identically
distributed dataset

IID dataset

D
{
2

m.---'a"'j

L1h

R A VR

AN

307

I €

5 A9

G

J

Non-IID dataset

-
'/
#
Ul_

-

(J
7]
J

Ot |«

J

¢
55«
778
T 77
2

N J




FL vs. Distributed Learning

* FL contains much more clients

» FL training is more complicated: Edge devices like
mobile phone could offline at any time



A Categorization of FL

* Horizontal Federated Learning
same feature space but differ in samples 11

 Vertical Federated Learning
same sample ID space but differ in feature space
* Federated Transfer Learning

data sets differ not only in samples but also in feature
Space [

[1] Yang, Q., Liu, Y., ... Tong, Y., 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelliggnt Systems and Technology 10.
doi:10.1145/3298981



Attacks on FL from semi-honest adversaries

Semi-honest adversaries: Strictly follow the
algorithms but try to infer private information from
received messages.

— Data reconstruction attack ..

— Membership inference attacks

— Property inference attack

[1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage f m g adie t Ad uralinformation processing systems 32 (2019).
[2] L. T Phong, Y. A T H ayashi, L. W g and S. Mor acypre gd pI ing via additively homomorphic encryption.
IEEE Transactio Information For and Sec ty 13(5)1333 1345 Ma y2018

[3] Shokri, Rez: tal M mbership infer tt cks against machine leaming models."2017 IEEE symposium on security and privacy (SP). IEEE, 2017.



Attacks on FL targeting on privacy

Loss-function/ReLu exploitation 2
First dense layer attack 3
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[2] Akiyoshi Sannai. Reconstruction of training samples from loss functions. arXiv:1805.07337, 2018.
[3] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacypreserving deep learmning via additively homomorphic encryption.
IEEE Transactions on Information Forensics and Security, 13(5):1333-1345, May 2018.



Attacks on FL from semi-honest adversaries
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[1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).



Attacks on FL from malicious adversaries

- Malicous: not only violate privacy, but also
arbitrarily deviate from algorithm

= Untargeted attacks: deteriorate the performance of
global model

a) Gaussian attack
0) Label flippings
c)

[4] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to Byzantine-Robust federated learning. In USENIX Security, pages 1605-1622, 2020
[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In ICML, pages 1467-1474, 2012
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Attacks on FL from malicious adversaries

- Targeted attacks (backdoor attacks): behave
normally on all inputs except for specific attacker-
chosen inputsg

. — — Label 7
Poisoned Target

Inputs Labels
—_— — Label 7
Label 4
Clean Correct
Inputs Labels
Label 9
Inference

[6] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To Backdoor Federated Leamning,” in AISTATS, 2020.
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Resist malicious clients

» Krum: selects one of the n local updates as the
global model updates based on smallest square-

distance score.

8 = Z lg; — gill3

ngFi..'n.—f—Q

* Median: instead of using mean value of FedAvg
(original FL), it considers the median value of
each parameter.
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Resist malicious clients

» Trimmed Mean: for each model parameter, server
removes the largest k and the smallest k values,
and then computes the mean of the remaining
n — 2k values as global updates.

- Weakness
— Honest majority setting

13



Resist malicious adversaries

- FLAME..

g1 — Pair-wise
92 7™ cosine 0 c Rejected (Outliers)
. distance 1n HDBSCAN
PR — € RnXn —
— C 0
Gn nl Accepted

 Weakness:
— Honest majority setting
— Not works in non-iid

[11] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen Mollering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni,

Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. Flame: Taming backdoors in federated learning. In USENIX Security, 2022
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Resist malicious adversaries

* Fltrust..
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[10] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhengiang Gong. Fltrust: Byzantine-robust federated leaming via trust bootstrapping. In NDSS, 2021.
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Goals

- Defense against malicious majority of clients
— Without the root of trust dataset
— Without the assumption of honest majority
— With Privacy preservation

+ Solution: Design a detector
— No judgment criteria
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Recap

* Byzantine attacks aim to manipulate the FL model
training process and degrade the model
performance.

of
malicious
clients

of honest
clients
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Solution: robustness

» Server’s perspective
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Solution: robustness

* Model segmentation
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Solution: robustness

+ Goal

— Design a detector -> do not mix clients with different
behavior (no need criteria)

» Chanllenge
— Non-iid
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Solution: robustness

- feature extraction with adjusted cosine similarity
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Fig. 12: Comparison of MUDGUARD with cosine similarity
and adjusted cosine similarity under GA.
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Solution: robustness

- feature extraction with adjusted cosine similarity
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Solution: robustness

* Clustering with L2 distance

(a) Pairwise cosine distance

(b) Pairwise adjusted cosine distance (CosM)

(c) Pairwise L distance for CosM

23



Solution: robustness
- FLAME.,
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[11] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen M'ollering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni,

Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. Flame: Taming backdoors in federated learning. In USENIX Security, 2022
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Solution: robustness

Feature extraction
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Solution: robustness
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Solution: privacy o Y@-9)w-D)

. . P e 2 . — 1/ 2
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Solution: privacy

« Differential attack

— A small number of honest clients are (single client is)
clustered together with malicious clients.

— Malicious clients behave honestly to gain honest
aggregations.

- Differential Privacy
g, < g/ max(1, |gi[2/A) + N(0, A%?)
g, < KS(g,,N) g,
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Solution: privacy

» Defend against malicious server
— Sending wrong secret shares to the clients

* Homomorphic hash function

H(z) = (g"¢(@), hso@)

H(z1 + 22)  (gMse@)+Hs0(@2) pHs o (21)+H; 4 (22))
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Solution: privacy
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Results

£ =06 | MNIST FMNIST CIFAR-10
| TPR TNR TPR TNR TPR TNR
FLAME 0.821 0.846 0.848 0.847 0.879 0.928
GA weights-—
MUDGUARD 1 ! 1 1 1 i
MUDGUARD | 0.957 1 0.94 1 0.966 1
FLAME 0.653 0.612 0.634 0.655 0.742 0.711
LFA weights-
MUDGUARD 0974 0987 0975 0977 0.98 0.985
MUDGUARD 0.929 0.924 0.927 0.916 0.943 0.967
FLAME 0.587 0.622 0.521 0.63 0.527 0.578
Krum | weights-
MUDGUARD 0974 0953 0973 0968 0971  0.966
MUDGUARD 0.916 0.929 0.96 0.933 0.967 0.959
FLAME 0691 0679 0699 0664 0.646 0615
Trim weights-
MUDGUARD 0.976 0.964 0.975 0.965 0.973 0.988
MUDGUARD | 0.938 0944 0927 0913 0964 0958
FLAME 0591 0573 0612 0625 0766 0719
AA weights-
MUDGUARD 0.998  0.982 0.99 0982 0984 0.982
MUDGUARD | 0971 0943 0941 0935 0.943 0.96
FLAME 0.777 0.763 0.794 0.83 0.856 0.897
BA weights-—
MUDGUARD 0.957 0969  0.965 0.97 0963 0979
MUDGUARD | 0936 0928 0926 0931 0947 0928
FLAME 0.313 0.32 _ _ 0.248  0.288
EA weights-
MUDGUARD 0.899 0.903 _ _ 0.893 0.921
MUDGUARD | 0.856  0.876 _ _ 0.827 0.83

TABLE 1IV: Effectiveness of clustering among

method, weights—-MUDGUARD, and MUDGUARD.

FLAME
31



Results
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Thanks!

Q&A
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