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What is Federated Learning?

• Federated learning (FL)
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FL vs. Distributed Learning

• Non – independent and identically 

distributed dataset



5

FL vs. Distributed Learning

• FL contains much more clients 

• FL training is more complicated: Edge devices like 

mobile phone could offline at any time



6

A Categorization of FL

• Horizontal Federated Learning
    same feature space but differ in samples [1]

• Vertical Federated Learning

   same sample ID space but differ in feature space [1]

• Federated Transfer Learning

   data sets differ not only in samples but also in feature 

space [1]

[1] Yang, Q., Liu, Y., ...  Tong, Y., 2019. Federated machine learning: Concept and applications. ACM Transactions on Intelligent Systems and Technology 10. 

doi:10.1145/3298981
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Attacks on FL from semi-honest adversaries

• Semi-honest adversaries: Strictly follow the 

algorithms but try to infer private information from 

received messages.

– Data reconstruction attack [1][2]

– Membership inference attack[3]

– Property inference attack

– …

[1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).

[2] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacypreserving deep learning via additively homomorphic encryption.

      IEEE Transactions on Information Forensics and Security, 13(5):1333–1345, May 2018.

[3] Shokri, Reza, et al. "Membership inference attacks against machine learning models."2017 IEEE symposium on security and privacy (SP). IEEE, 2017.
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Attacks on FL targeting on privacy 

𝑔𝑘

𝑔
= 𝑥𝑘

Loss-function/ReLu exploitation [2]

First dense layer attack [3]

[2] Akiyoshi Sannai. Reconstruction of training samples from loss functions. arXiv:1805.07337, 2018.

[3] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai. Privacypreserving deep learning via additively homomorphic encryption.

      IEEE Transactions on Information Forensics and Security, 13(5):1333–1345, May 2018.
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[1] Zhu, Ligeng, Zhijian Liu, and Song Han. "Deep leakage from gradients." Advances in neural information processing systems 32 (2019).

Attacks on FL from semi-honest adversaries
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Attacks on FL from malicious adversaries

• Malicous: not only violate privacy, but also 

arbitrarily deviate from algorithm

▪ Untargeted attacks: deteriorate the performance of 

global model

a) Gaussian attack [4]

b) Label flipping[5] 

c) …

[4] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. Local model poisoning attacks to Byzantine-Robust federated learning. In USENIX Security, pages 1605–1622, 2020

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines. In ICML, pages 1467–1474, 2012
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Attacks on FL from malicious adversaries

• Targeted attacks (backdoor attacks): behave 

normally on all inputs except for specific attacker-

chosen inputs[6] 

[6] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How To Backdoor Federated Learning,” in AISTATS, 2020.
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Resist malicious clients

• Krum: selects one of the 𝑛 local updates as the 

global model updates based on smallest square-

distance score. 

• Median: instead of using mean value of FedAvg 

(original FL), it considers the median value of 

each parameter.
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Resist malicious clients

• Trimmed Mean: for each model parameter, server 

removes the largest 𝑘 and the smallest 𝑘 values, 

and then computes the mean of the remaining 

𝑛 − 2𝑘 values as global updates.

• Weakness

– Honest majority setting 
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Resist malicious adversaries

• FLAME[11]: 

[11] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen M ̈ollering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, 

Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. Flame: Taming backdoors in federated learning. In USENIX Security, 2022

…
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• Weakness:

– Honest majority setting

– Not works in non-iid 
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Resist malicious adversaries

• Fltrust[10]:

• Weakness:
– Require an auxiliary dataset

[10] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhenqiang Gong. Fltrust: Byzantine-robust federated learning via trust bootstrapping. In NDSS, 2021.
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Goals

• Defense against malicious majority of clients
– Without the root of trust dataset

– Without the assumption of honest majority

– With Privacy preservation

• Solution: Design a detector 
– No judgment criteria



17

Recap

• Byzantine attacks aim to manipulate the FL model 

training process and degrade the model 

performance.

of honest 

clients

of 

malicious 

clients
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• Server’s perspective

Solution: robustness

clustering aggregation

Local Updates
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• Model segmentation

Solution: robustness
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Solution: robustness

• Goal

– Design a detector -> do not mix clients with different 

behavior (no need criteria)

• Chanllenge

– Non-iid
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Solution: robustness

• feature extraction with adjusted cosine similarity
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Solution: robustness

• feature extraction with adjusted cosine similarity
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Solution: robustness

• Clustering with L2 distance
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Solution: robustness
• FLAME[11]: 

[11] Thien Duc Nguyen, Phillip Rieger, Huili Chen, Hossein Yalame, Helen M ̈ollering, Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Shaza Zeitouni, 

Farinaz Koushanfar, Ahmad-Reza Sadeghi, and Thomas Schneider. Flame: Taming backdoors in federated learning. In USENIX Security, 2022
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• MUDGUARD
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Solution: robustness

• Feature extraction
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• Overview

Solution: robustness
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Solution: privacy

൷൳ෞ𝒈𝑡 𝑜𝑟 ෞ𝒘𝑡
Pairwise dot 

product

L2 norm

division

numeratorۤۥ
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mean

subtraction
CosMۤۥ

• Secure Multi-party computation

𝑆𝐼𝐺𝑁(ෞ𝒈𝑡)ۤۥ
Pairwise 

bit-XOR

CosMۤۥ

Arithmetic secrete sharing Binary secrete sharing

Multiplication bit-XOR locally
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Solution: privacy
• Differential attack

– A small number of honest clients are (single client is) 

clustered together with malicious clients.

– Malicious clients behave honestly to gain honest 

aggregations.

• Differential Privacy
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Solution: privacy
• Defend against malicious server

– Sending wrong secret shares to the clients

• Homomorphic hash function
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Solution: privacy
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Results
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Results
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Thanks!

Q & A
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