
Adaptive and Constraint-Aware 
Data Placement for 

S3-Compatible Storage
Marcell Feher

Chocolate Cloud ApS

ML4ECS Workshop, 26/01/2026, Krakow



Distributed, Provider-Independent Object Storage
System Baseline

● S3-compatible object storage
● Per-object pipeline

○ Sharding
○ Compression
○ AES-256 encryption
○ Erasure coding (k-of-n) with 

redundancy
● Fragments distributed

○ Multiple cloud providers
○ Multiple regions 
○ Optional on-prem backends

Benefits

● No single provider holds 
reconstructable data

● Resilience to provider and 
regional failures

● Strong data sovereignty 
guarantees

Limitations (pre-MLSysOps)

● Storage Policies are static and 
manually defined
○ Policy: EC parameters and 

explicit backend placement
● One policy per bucket, applied 

uniformly to all objects

Technical problem to solve in MLSysOps: 
How to adapt data placement when traffic patterns, constraints or objectives change?



Online Storage Policy Migration
Initial Contribution

● Introduced bucket-wide policy migration
● Users can update:

○ Erasure coding parameters (redundancy)
○ Backend provider/region assignments

● System migrates existing objects to the new 
policy

● Online process (no bucket downtime)
● Transparent for users and applications
● Deterministic final state

Why this matters

● Decouples data lifetime from policy lifetime
● Enabled policy evolution without re-upload
● Serves as a building block for automation

Policy migration turns static configuration into a controllable operation



Intent-Driven Storage Policies
High-level interface

● Users specify objectives, not placement

● Optimize for:
○ Download latency
○ Egress cost
○ Proximity to users

● Constraints supported:
○ Geo-fence (allowed countries)
○ GDPR mode (no provider stores 100% data)
○ Metro-level outage resilience
○ Max cost ($/TB)
○ Min speed

Key shift in approach

● Explicit placement → constraint satisfaction
● Policy generation is an optimization problem

Results

● System generates a concrete storage policy, not 
the user

● Policy is valid if all constraints are satisfied



Traffic-Aware, Closed-Loop Adaptation
Characteristics

● Feedback-driven (not rule-based)
● Autonomous but bounded by user 

constraints
● Migration is the actuation mechanism

MLSysOps spirit

● Applies control loops to storage, not just 
compute

● Treats data placement as a managed 
system

● Integrates monitoring → decision → 
actuation

Observability inputs

● Per-bucket access telemetry
○ Download volume
○ Request origin distribution
○ Serving gateway location

● Storage backend performance
○ Measured throughput from real downloads
○ Per gateway-backend pair

Control loop

● Periodic evaluation of recent traffic
● Solve for optimal policy under constraints
● Compare with current policy
● If different → trigger migration



DEMO



Current Challenges
Better Policy Generation

● Forecast bucket traffic (instead of looking at 
the recent past)

● Change redundancy when traffic volume 
changes and constraints allow

● Consider current policy and cost of the 
migration itself

● Introduce user-defined cost limits for 
migrations

● Additional controls (e.g., add green energy 
to the optimization mix)

Finer granularity

● Object or sub-object level traffic 
profiling, policy eval and migrations



Thank You!


