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Summary 

Deliverable D6.4 reports the final status of the datasets and machine learning (ML) models made publicly 
available within the MLSysOps project, in accordance with FAIR principles and the project’s open science 
strategy. To ensure long-term accessibility and scientific transparency, Zenodo was selected as the primary 
platform to host the MLSysOps Community, serving as a persistent repository for sharing datasets, ML models, 
and technical reports. 

This deliverable provides a comprehensive index and technical description of nineteen distinct assets: 

• Eleven Machine Learning Models: These models, produced through collaborative efforts between 
partners, are primarily provided in the ONNX (Open Neural Network Exchange) format to ensure cross-
platform interoperability and ease of deployment. 

• Eight Public Datasets: These resources include raw and processed data collected from diverse sources, 
including real-world IoT testbeds, 5G signal monitoring, and high-fidelity system simulators. 

By centralizing these resources, Deliverable D6.4 establishes a foundation for future research in autonomic 
system management across the cloud-edge continuum. The availability of these assets directly supports the 
project's goal of fostering an open research ecosystem for AI-driven infrastructure management. 
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Abbreviations 

FAIR Findable, Accessible, Interoperable, and Reusable 

FPGA Field-Programmable Gate Array 

LSTM Long Short-Term Memory 

ML Machine Learning 

ONNX Open Neural Network Exchange 

RL Reinforcement Learning 
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1 Introduction 

Deliverable D6.4 provides a centralized index and technical overview of the datasets and machine learning (ML) 
models produced throughout the MLSysOps project. As the project focuses on designing an AI-controlled 
framework for autonomic system management across the cloud-edge continuum, these open-source resources 
are part of the practical foundation of its research and development efforts. By documenting nineteen distinct 
assets—comprising eight datasets and eleven machine learning models—this document serves as a 
comprehensive guide for anyone interested in replicating project results or building upon them. To ensure 
maximum impact and scientific integrity, all assets have been curated in accordance with open science standards 
and hosted in a persistent public repository (Zenodo). 

 

1.1 FAIR Principles  

The FAIR principles represent a set of guidelines designed to optimize the reuse of scientific data by both 
humans and machines. FAIR is an acronym and every letter has an important meaning. In detail: 

• Findable: Data and metadata should be easy to find for both humans and computers. This involves using 
unique and persistent identifiers (like DOIs) and indexing data in searchable resources. 

• Accessible: Once found, users need to know how the data can be accessed, possibly including 
authentication and authorization. Data should be retrievable using standard communication protocols. 

• Interoperable: Data needs to be integrated with other data. It should use a formal, accessible, shared, 
and broadly applicable language for knowledge representation. 

• Reusable: The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and data 
should be well-described so that they can be replicated and/or combined in different settings. 

 

The project selected Zenodo as its primary platform because it directly supports these FAIR objectives through 
several key features: 

• Persistent Identifiers: Zenodo automatically assigns a Digital Object Identifier (DOI) to every upload. 
This makes the datasets and models permanently citable and "Findable". 

• Community Curation: It allows for the creation of a dedicated MLSysOps Zenodo Community. This 
centralizes all project results -- including the eight datasets, eleven models as well as reports -- making 
them easier for researchers to browse in one location. 

• Long-Term Preservation: As a non-commercial repository hosted by CERN, Zenodo provides a stable, 
long-term home for data, ensuring "Accessibility" even after the project concludes. 

• Metadata Support: The platform requires structured metadata for every upload, which improves 
"Interoperability" and "Reusability" by providing context such as authors, descriptions, and usage 
instructions. 

• Open Access Integration: Zenodo is built to support Open Access mandates, making it easy to comply 
with grant requirements while sharing work with the public 

 

1.2 Datasets 

 
The project has released eight public datasets hosted on Zenodo to support research in autonomic system 
operations. In detail: 
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1. Ubiwhere Smart Lamppost Dataset: Environmental and traffic data (GPU/CPU usage, noise, 
temperature, and person/car/motorcycle detections) from a smart lamppost in Aveiro, Portugal. 

2. 5G Jamming Attack Detection Dataset: Physical layer (PHY) cellular network traces, including signal 
strength (RSRP, RSRQ, SINR), thermal sensors, and RF transmission power from an Android device 
under 5G jamming scenarios. 

3. INRIA I/Q Signal Dataset: Raw radio signal traces (In-Phase/Quadrature) for RF fingerprinting and 
physical layer authentication, focusing on unique hardware impairments. 

4. Tractor-Drone Co-Robotics Dataset: Telemetry and computer vision metrics from a smart agriculture 
system where an autonomous drone assists a tractor when its cameras are blinded by sun glare. 

5. TUD Telemetry Dataset: Host telemetry snapshots including per-core CPU utilization (idle, iowait, irq, 
etc.) and various memory metrics (used, free, available) for anomaly detection. 

6. Object Storage Transfer Speeds Dataset: Data documenting upload and download performance across 
various cloud providers and regions for analyzing network throughput. 

7. Job Placement Failures Dataset: Over one million rows of data from a simulated datacenter documenting 
job placement attempts under varying network and fragmentation conditions. 

8. FPGA ML Inference Telemetry Dataset: Performance metrics from FPGA-based ML inference, 
including latency breakdowns, per-thread throughput, and memory bandwidth usage. 

1.3 Models 

The consortium has produced eleven machine learning models , primarily in ONNX format for cross-platform 
compatibility: 

1. Cluster VM Management Model: A reinforcement learning agent that recommends creating, destroying, 
or doing nothing with VMs based on infrastructure state. 

2. 5G Jamming Attack Detection Model: An LSTM-based neural network that processes 5G signal features 
to identify anomalies or intentional jamming. 

3. RF Fingerprinting Models: Models designed for physical layer authentication by identifying specific 
authorized devices from their radio signal transients. 

4. SkyFlok Latency Prediction Models: Regression models (one for each of six backends) that predict file 
transfer times for specific cloud storage routes. 

5. Smart Lamppost Noise Prediction Model: A multivariate LSTM that estimates future environmental 
noise levels (dB) based on real-time traffic and pedestrian counts. 

6. Drone Deployment Prediction Model: An XGBoost classifier that predicts the "should_fly" signal to 
trigger proactive drone deployment in agriculture. 

7. 5G Latency Optimization Prediction Model: A model designed to optimize and predict latency 
behaviors within 5G network configurations. 

8. Anomaly Detection Model: A reconstruction-based model (e.g., autoencoder) trained on host telemetry 
to identify system performance deviations. 

9. PeakLife VM Predictor: A model that simultaneously predicts future CPU utilization and the remaining 
lifetime of a virtual machine for proactive resource management. 

10. Job Placement Failure Predictor: A model trained on simulated datacenter data to predict the outcome 
of job placement attempts under varying load. 

11. FPGA-Based RL Policy: A Reinforcement Learning policy specialized for selecting discrete actions in 
FPGA configurations based on system telemetry 
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1.4 The MLSysOps Zenodo Community 

The MLSysOps community created at Zenodo can be found in the following link: 
https://zenodo.org/communities/mlsysops/about 
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2 MLSysOps Public Datasets 

On this section we introduce in detail every dataset that is made public in the context of MLSysOps. For every 
entry we provide the Zenodo link, the citation that was produced by Zenodo when the dataset was uploaded as 
well as copied information from the Zenodo entry. 

2.1 Ubiwhere Smart Lamppost Dataset 

2.1.1 Link 

https://zenodo.org/records/18245141 

 

2.1.2 Citation 

Ubiwhere (Portugal). (2026). Ubiwhere Smart Lamppost Dataset (v1.0.0) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.18245141 

 

2.1.3 More details 

About the Dataset 

This dataset was collected by Ubiwhere from a smart lamp post installed in the company headquarters, in city 
of Aveiro, Portugal. The smart lamp post is equipped with video and sound sensors (camera and microphone) 
and captures environmental and traffic-related data. 

Time period: Data covers from 2025-08-22 13:10:00 to 2025-08-29 12:00:00. 

About the Smart Lamppost.  

This dataset was generated from a Smart Lamppost IoT installation by Ubiwhere in company headquarters, in 
the city of Aveiro, Portugal. The Smart Lamppost is a modular urban infrastructure solution that supports: 
intelligent LED lighting with remote management and analytics, optional electric vehicle (EV) charging 
capability, edge computing and telemetry, neutral hosting for 4G/5G telecom services, environmental sensing 
(video, sound, noise level, temperature). 

For more details, see the product page: https://www.ubiwhere.com/en/products/smart-cities/smart-lamppost/ 

Dataset Features 

• timestamp: Date and time of the observation (ISO 8601 format) 

• GPU Usage: Percentage of GPU utilization of the device 

• CPU Usage: Percentage of CPU utilization of the device 

• Memory Used: Amount of RAM used by the device (in bytes) 

• Jetson Energy: Energy consumption of the Jetson device (in joules or watt-seconds) 

• Switch Energy: Energy consumption of the network switch (in joules or watt-seconds) 

• Inference Time: Time taken for AI inference processing (in seconds) 

• Tracking Time: Time taken for object tracking processing (in seconds) 

• Noise Level: Measured environmental noise level (in decibels, dB) 

• Temperature: Ambient temperature recorded by the sensor (in degrees Celsius) 
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• Instantaneous Person Detections: Number of persons detected in the current instant/frame 

• Instantaneous Car Detections: Number of cars detected in the current instant/frame 

• Instantaneous Motorcycle Detections: Number of motorcycles detected in the current instant/frame 

 

Intended Use 

• Environmental monitoring 

• Traffic analysis 

• Energy consumption profiling 

• AI and ML model training for object detection and inference optimization 

• Smart city infrastructure research 

 

Column Summary and Data Types 

Descriptor Count Mean Std Min 25% 50% 
(Median) 75% Max 

GPU Usage (i64) 597,002 96.2 15.0 0.0 100.0 100.0 100.0 100.0 
CPU Usage (f64) 597,002 11.2 0.7 9.6 10.8 11.1 11.4 36.5 
Memory Used (i64) 597,002 7.21e9 1.07e8 5.75e9 7.11e9 7.21e9 7.30e9 7.51e9 
Jetson Energy (f64) 597,002 16.1 1.3 10.4 15.0 15.9 17.0 22.1 
Switch Energy (f64) 597,002 13.0 2.0 9.5 11.3 11.4 15.4 16.3 
Inference Time (f64) 597,002 0.2 0.0 0.1 0.2 0.2 0.2 0.3 
Tracking Time (f64) 597,002 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
Noise Level (f64) 597,002 12.2 7.2 -3.5 8.7 10.4 12.9 55.4 
Temperature (f64) 596,972 33.8 9.7 22.1 24.7 27.3 44.7 46.6 
Inst. Person Detections 
(i64) 597,002 0.0 1.6 0.0 0.0 0.0 0.0 777.0 

Inst. Car Detections 
(i64) 

597,002 0.0 1.3 0.0 0.0 0.0 0.0 580.0 

Inst. Motorcycle 
Detections (i64) 597,002 0.0 0.0 0.0 0.0 0.0 0.0 7.0 
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2.2 5G Jamming Attack Detection Dataset 

2.2.1 Link 

https://zenodo.org/records/18253312 

2.2.2 Citation 

Xu, J., Moheddine, A., Loscri, V., Brighente, A., & Conti, M. (2026). INRIA SHIELD Framework Dataset - 5G 
Jamming Attack Detection (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18253312 

2.2.3 More details 

Overview 

This dataset contains physical layer (PHY) cellular network traces collected from an Android smartphone (OnePlus 
Nord 2T 5G) under 5G jamming attack scenarios. 

It serves as the official training and validation data for the SHIELD Framework. 

• Paper: SHIELD: Scalable and Holistic Evaluation Framework for ML-Based 5G Jamming Detection 
• Source Code: The full Android application and model training code are available on GitHub: 

https://github.com/mlsysops-eu/model-5g-jamming-detection 

Authors 

• Jiali Xu (Inria Centre at the University of Lille) 
• Aya Moheddine (Inria Centre at the University of Lille) 
• Valéria Loscrì (Inria Centre at the University of Lille) 
• Alessandro Brighente (Department of Methematics, University of Padova) 
• Mauro Conti (Department of Methematics, University of Padova) 

 

File Description 

1. Raw Data (data/raw/) 

• replay.log: The unprocessed Android radio log captured via adb logcat -b radio. It contains mixed streams 
of signal reports, thermal sensors, and modem debug messages. 

2. Processed Data (data/processed/) 

• fused_input.csv: (Recommended for Use) The synchronized, feature-engineered dataset ready for Machine 
Learning. 

o Frequency: 1Hz (Resampled) 
o Dimensions: 60 Columns (+1 timestamp) 
o Format: Time-series matrix suited for LSTM/RNN models. 

3. Configuration (config/) 

• 1plus-nord2t.yaml: Defines the Regular Expressions (Regex) used to parse the raw log file. It maps specific 
log tags (e.g., AT< +ECSQ) to data features. 

4. Tooling (scripts/) 

• parse_data.py: A Python script that reads 1plus-nord2t.yaml to extract raw metrics from the log into 
intermediate CSVs. 

• fuse_data.py: A Python script that performs time-synchronization (linear interpolation) and feature 
extraction (rolling window statistics). 
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Dataset Schema (fused_input.csv) 

The fused dataset contains 60 feature columns. These are derived from 12 Raw Metrics processed through 5 
Statistical Aggregations over a 10-second sliding window. 

The 12 Raw Metrics 

1. Signal Strength (3): ssRsrp, ssRsrq, ssSinr (Standard 5G metrics). 
2. Extended Quality (6): ecsq_idx0, ecsq_idx1, ecsq_idx2, ecsq_idx5, ecsq_idx6, ecsq_idx8 (Specific modem 

quality indices from AT+ECSQ). 
3. Thermal (2): thermal_idx3, thermal_idx5 (Device internal temperature sensors). 
4. RF Transmission (1): erftx_idx9 (Uplink transmission power state). 

 

The 5 Aggregations (Suffixes) 

For each raw metric above, the following statistics are calculated: 

• _mean: Average value over the window. 
• _max: Maximum value. 
• _min: Minimum value. 
• _std: Standard deviation (Stability indicator). 
• _amplitude: Difference between Max and Min (max - min). 

Total Dimensions: 12 metrics × 5 aggregations = 60 Columns. 

Example Column Names: 

• ssRsrp_mean (Average Signal Power) 
• ssSinr_std (Signal to Noise Stability) 
• thermal_idx3_amplitude (Temperature fluctuation) 

 

Usage Instructions 

 

Option A: Quick Start (ML Training) 

Load the pre-processed file directly into your model. 

import pandas as pd 
df = pd.read_csv("data/processed/fused_input.csv", index_col="timestep") 
print(df.shape)   
# Output: (Rows, 60) 

Option B: Reproduce the Pipeline 

If you wish to change the preprocessing parameters (e.g., change window size from 10s to 5s), follow these steps: 

1. Create a python environment: 

python -m venv venv 
source venv/bin/activate 

2. Install Requirements: 
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pip install pandas pyyaml 

3. Run the Parser: Extracts the raw numbers from data/raw/replay.log using the rules in config/1plus-nord2t.yaml. 

python scripts/parse_data.py 

Output: Creates a parsed_data/ folder with individual CSVs. 

4. Run the Fuser: Synchronizes the data to 1Hz and calculates rolling statistics. 

python scripts/fuse_data.py 

Output: Generates a new fused_data.csv. 
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2.3 I/Q Signal Dataset for RF Fingerprinting and Physical Layer Authentication 

2.3.1 Link 

https://zenodo.org/records/18268648 

 

2.3.2 Citation 

Alla, I., Yahia, S., Loscri, V., & eldeeb, . hossien . (2026). INRIA I/Q Signal Dataset for RF Fingerprinting and 
Physical Layer Authentication (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18268648 

 

2.3.3 More details 

Overview 

This dataset contains Raw I/Q (In-Phase/Quadrature) radio signal traces collected using a BladeRF AX4 
Software Defined Radio (SDR) and GNU Radio. 

It serves as the official training and validation data for the PLA-AP project (Physical Layer Authentication), 
designed to evaluate machine learning approaches for identifying wireless devices based on their hardware 
impairments (RF fingerprints). 

• Paper: Robust Device Authentication in Multi-Node Networks: ML-Assisted Hybrid PLA Exploiting 
Hardware Impairments 

• Source Code: The preprocessing and model training code is available on GitHub: 
https://github.com/mlsysops-eu/model-physical-layer-authentication 

Authors 

• Ildi Alla (Inria Centre at the University of Lille) 
• Selma Yahia (Inria Centre at the University of Lille) 
• Valéria Loscrì (Inria Centre at the University of Lille) 
• Hossien Eldeeb (University of Cambridge) 

 

File Description 

Raw Data (raw/) 

This directory contains the binary signal files captured directly from the SDR. 

• Format: Binary I/Q data (Interleaved 32-bit floats). 
• Content: Each file captures the "burst" transmission of a specific device, including the transient (turn-

on) and steady-state phases. 
• Organization: The files are organized by Device ID (e.g., device1, device2). 

 

Dataset Technical Specifications 

The data was collected under controlled experimental conditions to ensure reproducibility. 

 

Hardware Setup 
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Receiver: BladeRF AX4 (SDR) connected to a host PC running GNU Radio. 

Transmitters: Various commercial-off-the-shelf (COTS) wireless devices (e.g., NRF52840 dongles or similar 
IoT nodes). 

 

Signal Characteristics 

• Sampling Rate: 20 Msps (Mega Samples Per Second). 
• Center Frequency: 2.4 GHz (ISM Band). 
• Data Format: Complex64 (Interleaved 32-bit floats: I, Q, I, Q...). 
• Key Feature: The dataset specifically targets the transient phase (the initial signal ramp-up), which 

contains the most distinct hardware fingerprints. 
 
Usage Instructions 

Loading Raw I/Q Data 

Since this dataset contains raw binary files without headers, you can load them using Python and NumPy. 

import numpy as np 
import matplotlib.pyplot as plt 
 
# 1. Define File Path 
filename = "data/raw/device1_trial1.bin" # Replace with actual filename 
 
# 2. Load Binary Data (Complex64) 
# BladeRF/GNU Radio saves data as interleaved float32 (I, Q, I, Q...) 
# This is equivalent to numpy's complex64 type 
data = np.fromfile(filename, dtype=np.complex64) 
 
# 3. Basic Visualization 
plt.figure(figsize=(10, 4)) 
plt.plot(np.real(data[0:1000]), label="In-Phase (I)") 
plt.plot(np.imag(data[0:1000]), label="Quadrature (Q)") 
plt.title("Raw I/Q Signal Snippet") 
plt.legend() 
plt.show() 

 

Processing the Data 

To transform this raw data into features suitable for machine learning (e.g., Transient Detection, Filtering, Gabor 
Transform) and save them in a structured HDF5 format, please refer to the the source code implemented in the 
official GitHub repository: 

• Preprocessing Logic: https://github.com/mlsysops-eu/model-physical-layer-
authentication/blob/main/src/preprocessing.py 

• Data Loader & HDF5 Saving: https://github.com/mlsysops-eu/model-physical-layer-
authentication/blob/main/src/dataloader.py 
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2.4 Tractor-Drone Co-Robotics Dataset for Weed Detection 

2.4.1 Link 

https://zenodo.org/records/18293250 

2.4.2 Citation 

Augmenta (acquired by CNH Industrial). (2026). Augmenta Tractor-Drone Co-Robotics Dataset for Weed 
Detection (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18293250 

 

2.4.3 More details 

This dataset contains telemetry and computer vision metrics collected from a Smart Agriculture co-robotics 
system developed by Augmenta (acquired by CNH Industrial). The system consists of a tractor equipped with 
a "Field Analyzer" and an autonomous drone (UAV). 

The data was collected to train Machine Learning models (specifically XGBoost) to predict the should_fly 
event—a signal that triggers the drone to launch and assist the tractor when the tractor's onboard cameras are 
blinded by environmental factors (e.g., sun glare/lens flare). 

This work was conducted as part of the MLSysOps project (EU Horizon Europe). 

 System Context 

The Augmenta system automates the application of fertilizers and herbicides using Real-Time Computer Vision. 

1. Normal Operation: The tractor cameras detect weeds and spray precisely. 

2. The Problem: When the sun is at a specific angle (e.g., sunset/sunrise), it creates lens flare, blinding the 
tractor's camera ("Sensor Fault"). The system enters "Safe Mode" and sprays the whole field blindly, wasting 
chemicals. 

3. The Solution: The system predicts this fault and deploys a Drone to fly ahead of the tractor. The drone sends 
clear weed detection coordinates back to the tractor, allowing precise spraying to continue. 

 

 Data Dictionary 

The dataset consists of time-series telemetry. The core goal is to predict should_fly using the sensor and 
performance metrics. 

 

Column Name Type Description 
timestamp datetime ISO 8601 Timestamp of the recording. 
quality_indicator_1 int Confidence metric: Number of data correspondences between samples. 
quality_indicator_2 int Confidence metric: Number of data points used for localization. 
field_indicator_1 int The number of detected weeds in the current frame. 
field_indicator_2 float Fraction of the field frame under environmental variation. 
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sensor_fault_probability_1 float Key Feature: Probability of the camera sensor being blinded by the sun 
(0.0 to 1.0). 

environment_sensor_1 float Ambient light/environmental condition measurement. 
processing_performance float Average processing speed/performance metric of the vision unit. 
success_rate float Fraction of successfully processed image frames (0.0 to 1.0). 

should_fly int 
Target Variable: Binary flag (0 or 1). 1 indicates the drone should be 
deployed. 

heading float Instant heading of the vehicle (radians). 
velocity float Instant velocity of the vehicle (m/s). 
latitude float GNSS Latitude. 
longitude float GNSS Longitude. 
altitude float GNSS Altitude (meters). 
time_since_sensor_fault float Time (seconds) elapsed since the last sensor fault 

 

 

Statistical Summary 

Descriptor Count Mean Std Min 25% 
50% 
(Median) 75% Max 

quality_indicator_1 1053 545.06 145.27 9.0 454.0 531.0 631.0 1051.0 
quality_indicator_2 1053 413.88 119.38 64.0 324.0 396.0 492.0 835.0 
field_indicator_1 1053 52.12 58.25 0.0 18.0 37.0 66.0 767.0 
field_indicator_2 1053 0.015 0.010 0.001 0.008 0.013 0.021 0.086 
sensor_fault_prob_1 1053 0.185 0.271 0.000 0.0002 0.086 0.384 0.999 
environment_sensor_1 1053 10187.9 8416.8 808.5 2456.2 8959.3 20497.2 25678.0 
processing_perf 1053 12.48 1.98 4.99 10.48 13.03 14.44 15.52 
success_rate 1053 0.51 0.47 0.00 0.00 0.57 1.00 1.00 
should_fly 1053 0.37 0.48 0.0 0.0 0.0 1.0 1.0 
heading 1053 0.81 1.66 -3.13 -0.66 1.34 2.48 3.13 
velocity 1053 2.72 0.99 0.01 2.22 2.78 3.33 5.25 
altitude 1053 276.11 38.97 254.2 255.7 270.9 273.5 443.5 

 

Collection Methodology 

• Location: Perivlepto, Volos, Greece (Augmenta Test Field). 
• Conditions: Data was specifically collected during sunset/sunrise to induce lens flare and trigger the 

"Safe Mode" (sensor fault) scenarios. 
• Equipment: 

o Tractor Node: Standard agricultural tractor with Augmenta Field Analyzer (Cameras + Edge 
Compute). 

o Drone Node: Custom UAV integrated with the Augmenta control stack. 
• Protocol: The tractor performed "Back-and-Forth" scanning of the field. As the tractor turned into the 

sun, the sensor_fault_probability spiked, triggering the should_fly signal for the drone. 
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2.5 Telemetry Dataset for Anomaly Detection 

2.5.1 Link 

https://zenodo.org/records/18311353 

2.5.2 Citation 

Delft University of Technology. (2026). TUD Telemetry Dataset for Anomaly Detection (v1.0.0) [Data set]. 
Zenodo. https://doi.org/10.5281/zenodo.18311353 

 

2.5.3 More details 

Dataset description 

This dataset contains snapshots of host telemetry metrics collected during different workload conditions. It is 
intended for training and evaluating anomaly detection models (e.g., reconstruction-based autoencoders). 

The metrics cover: 

• Per-core CPU utilization breakdown by state (percent) 
• Memory metrics (bytes) 

 

Data Generation Method 

1. A node was instrumented with a telemetry pipeline (e.g., Prometheus + node exporter) to collect CPU 
and memory metrics at a fixed sampling interval. 

2. Multiple workload scenarios were executed (e.g., no load / medium load / high load). 
3. Metrics were exported to CSV with a fixed column order. Each row represents one telemetry snapshot. 

Notes: 

• CPU values are percentages per core and CPU state. Due to sampling/aggregation, values may 
occasionally slightly exceed 100. 

• node_memory_MemTotal_bytes is constant for a given machine (total installed memory). 

 

Columns 

All CSV files share the same schema (38 columns). Units and meanings are listed below. 

 

CPU columns (percent) 

For each core i in {0,1,2,3}, the following columns represent the percentage of time spent in the given CPU state 
during the sampling window: 

• cpu_i_idle, cpu_i_iowait, cpu_i_irq, cpu_i_nice, cpu_i_softirq, cpu_i_steal, cpu_i_system, cpu_i_user 

Memory columns (bytes) 

• memory_used_bytes: used memory in bytes (as exported by the telemetry pipeline) 
• node_memory_Buffers_bytes: memory used for buffers 
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• node_memory_Cached_bytes: memory used for page cache 
• node_memory_MemAvailable_bytes: estimate of memory available for starting new applications 
• node_memory_MemFree_bytes: unused memory 
• node_memory_MemTotal_bytes: total installed memory 

 

Column descriptions (full list) 

Column Unit Description 
cpu_0_idle % Core 0 CPU time in idle state 
cpu_0_iowait % Core 0 CPU time waiting on I/O 
cpu_0_irq % Core 0 CPU time servicing interrupts 
cpu_0_nice % Core 0 CPU time for niced processes 
cpu_0_softirq % Core 0 CPU time servicing softirqs 
cpu_0_steal % Core 0 CPU time stolen (virtualization) 
cpu_0_system % Core 0 CPU time in kernel space 
cpu_0_user % Core 0 CPU time in user space 
cpu_1_idle % Core 1 CPU time in idle state 
cpu_1_iowait % Core 1 CPU time waiting on I/O 
cpu_1_irq % Core 1 CPU time servicing interrupts 
cpu_1_nice % Core 1 CPU time for niced processes 
cpu_1_softirq % Core 1 CPU time servicing softirqs 
cpu_1_steal % Core 1 CPU time stolen (virtualization) 
cpu_1_system % Core 1 CPU time in kernel space 
cpu_1_user % Core 1 CPU time in user space 
cpu_2_idle % Core 2 CPU time in idle state 
cpu_2_iowait % Core 2 CPU time waiting on I/O 
cpu_2_irq % Core 2 CPU time servicing interrupts 
cpu_2_nice % Core 2 CPU time for niced processes 
cpu_2_softirq % Core 2 CPU time servicing softirqs 
cpu_2_steal % Core 2 CPU time stolen (virtualization) 
cpu_2_system % Core 2 CPU time in kernel space 
cpu_2_user % Core 2 CPU time in user space 
cpu_3_idle % Core 3 CPU time in idle state 
cpu_3_iowait % Core 3 CPU time waiting on I/O 
cpu_3_irq % Core 3 CPU time servicing interrupts 
cpu_3_nice % Core 3 CPU time for niced processes 
cpu_3_softirq % Core 3 CPU time servicing softirqs 
cpu_3_steal % Core 3 CPU time stolen (virtualization) 
cpu_3_system % Core 3 CPU time in kernel space 
cpu_3_user % Core 3 CPU time in user space 
memory_used_bytes bytes Used memory 
node_memory_Buffers_bytes bytes Buffers 
node_memory_Cached_bytes bytes Cached 
node_memory_MemAvailable_bytes bytes MemAvailable 
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node_memory_MemFree_bytes bytes MemFree 
node_memory_MemTotal_bytes bytes MemTotal 

 

Summary statistics 

The following table reports per-column data type and summary statistics (min / median / max). 

This table was computed from the provided file. 

Column Type Min Median Max 
cpu_0_idle float64 0 29.03 100.5 
cpu_0_iowait float64 0 0.02 16.43 
cpu_0_irq float64 0 0 21.77 
cpu_0_nice float64 0 0 18.78 
cpu_0_softirq float64 0 0 13.74 
cpu_0_steal float64 0 0 18.48 
cpu_0_system float64 0 0.48 22.55 
cpu_0_user float64 0 30.5 63.15 
cpu_1_idle float64 0 29 104 
cpu_1_iowait float64 0 0.02 22.61 
cpu_1_irq float64 0 0 20.17 
cpu_1_nice float64 0 0 17 
cpu_1_softirq float64 0 0 26.32 
cpu_1_steal float64 0 0 17.09 
cpu_1_system float64 0 0.43 35.32 
cpu_1_user float64 0 30.63 75.72 
cpu_2_idle float64 0 28.91 100.4 
cpu_2_iowait float64 0 0.01 19.66 
cpu_2_irq float64 0 0 14.42 
cpu_2_nice float64 0 0 19.61 
cpu_2_softirq float64 0 0 16.19 
cpu_2_steal float64 0 0 15.58 
cpu_2_system float64 0 0.45 33.33 
cpu_2_user float64 0 30.7 86.3 
cpu_3_idle float64 0 29.01 112.5 
cpu_3_iowait float64 0 0.02 14.85 
cpu_3_irq float64 0 0 17.67 
cpu_3_nice float64 0 0 19.58 
cpu_3_softirq float64 0 0 19.25 
cpu_3_steal float64 0 0 15.61 
cpu_3_system float64 0 0.44 29.21 
cpu_3_user float64 0 30.62 70 
memory_used_bytes float64 8.89095e+08 1.70806e+09 3.32244e+09 
node_memory_Buffers_bytes float64 1.05865e+08 1.16023e+08 1.18623e+08 
node_memory_Cached_bytes float64 5.08577e+09 5.39835e+09 5.57918e+09 
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node_memory_MemAvailable_bytes float64 5.00084e+09 6.61521e+09 7.43418e+09 
node_memory_MemFree_bytes float64 0 1.26609e+09 1.96274e+09 
node_memory_MemTotal_bytes float64 8.32328e+09 8.32328e+09 8.32328e+09 

 

Reproducing the statistics table 

To recompute the summary statistics for one or more CSV files (e.g., all training files plus the test file), run the 
following locally (requires pandas and numpy): 

python - <<"PY" 
import glob 
import numpy as np 
import pandas as pd 
 
# Edit paths as needed 
files = glob.glob("data/*.csv") + ["telemetry.csv"] 
 
frames = [pd.read_csv(f) for f in files] 
df = pd.concat(frames, ignore_index=True, sort=False) 
 
rows = [] 
for col in df.columns: 
    s = df[col] 
    dtype = str(s.dtype) 
    if pd.api.types.is_numeric_dtype(s): 
        arr = s.to_numpy(dtype=float) 
        rows.append((col, dtype, np.nanmin(arr), np.nanmedian(arr), 
np.nanmax(arr))) 
    else: 
        rows.append((col, dtype, np.nan, np.nan, np.nan)) 
 
print("| Column | Type | Min | Median | Max |") 
print("|---|---:|---:|---:|---:|") 
for col, dtype, mn, med, mx in rows: 
    def fmt(v): 
        if isinstance(v, float) and np.isnan(v): 
            return "" 
        av = abs(float(v)) 
        if av >= 1e6: 
            return f"{v:.6g}" 
        return f"{v:.4g}" 
 
    print(f"| `{col}` | `{dtype}` | {fmt(mn)} | {fmt(med)} | {fmt(mx)} |") 
PY 
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2.6 Object Storage Transfer Speeds Dataset 

2.6.1 Link 

https://zenodo.org/records/18412125 

2.6.2 Citation 

Fehér, M. (2026). Chocolate Cloud Object Storage Transfer Speeds Dataset (v1.0.0) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.18412125 

2.6.3 More details 

Overview 

This dataset measures upload and download performance between Fly.io gateway regions (origins) and 
commercial object storage backends (targets). Each row is one measurement for a specific data size, initiated 
from a Fly.io region and recorded against a particular backend, and is intended for studying network 
performance, latency-sensitive placement, and cross-region transfer behavior. 

Some records use 1-byte uploads/downloads to approximate latency by activating the target service's data path 
with minimal payload. For each timestamp, measurements include standard sizes (1 byte, 1 MB, 10 MB, 50 
MB) plus a few random sizes up to 50 MB. The dataset includes ~900.000 measurements spanning 86 days 
between 2024-10-31 and 2025-01-24, with a pause from 2024-11-18 to 2024-12-18. Each measurement is 
uniquely identified by (timestamp, origin_fly_region, target_backend_id, size_bytes). 

 

CSV Columns 

• timestamp: UTC datetime string for the measurement (timezone-aware, ISO 8601). 
• origin_fly_region: Fly.io gateway region code (3-letter). 
• origin_countrycode: ISO 3166-1 alpha-2 country code (lowercase) for the Fly.io gateway. 
• origin_city: City of the Fly.io gateway. 
• origin_lat: Latitude of the Fly.io gateway. 
• origin_lng: Longitude of the Fly.io gateway. 
• target_backend_id: Internal storage backend ID. 
• target_provider: Cloud provider name. 
• target_region: Cloud provider region. 
• target_countrycode: ISO 3166-1 alpha-2 country code (lowercase) for the backend location. 
• target_city: City of the storage backend. 
• target_timezone: Time zone name for the backend. 
• target_lat: Latitude of the storage backend. 
• target_lng: Longitude of the storage backend. 
• target_local_time: Local time at the target backend for the same instant as timestamp. 
• distance_km: Great-circle distance between origin and target, in kilometers (rounded int). 
• size_bytes: Data size in bytes for the measurement. 
• upload_time_ms: Upload time in milliseconds. 
• download_time_ms: Download time in milliseconds. 
• upload_speed_mbps: Upload speed in megabits per second (2 decimal places). 
• download_speed_mbps: Download speed in megabits per second (2 decimal places). 
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Intended Use Examples 

• Compare upload/download performance across cloud providers and regions for a fixed data size. 
• Identify nearest or best-performing storage backends for a given Fly.io region. 
• Analyze how geographic distance correlates with throughput. 
• Build placement or replication strategies based on observed network performance. 
• Use as input for predictive models of transfer time or throughput. 

Notes 

• Rows are sorted by timestamp ascending. 
• City names may contain commas and are properly quoted in the CSV. 
• There are no missing values 

Related ML Models 

Models trained on this dataset are published at: https://zenodo.org/records/18288840 

These models predict transfer time for a specific Fly.io region to storage-backend route at a given time and data 
size. There is a separate model for six backends and the Fly.io London (lhr) region. 

The target_backend_id column is the internal unique ID of a region for a commercial cloud storage provider 
and is consistent with the backend identifiers used in the published models. 
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2.7 Job Placement Failure Dataset for Simulated Datacenter Clusters with Reconfigurable Optical 
Networks 

2.7.1 Link 

https://zenodo.org/records/18485585 

2.7.2 Citation 

Patras, A., Syrivelis, D., & Terzenidis, N. (2026). MLNX Job Placement Failure Dataset for Simulated 
Datacenter Clusters with Reconfigurable Optical Networks (1.0.0) [Data set]. Zenodo. 
https://doi.org/10.5281/zenodo.18485585 

2.7.3 More details 

This dataset contains cluster-level snapshots and job placement outcomes generated using a simulated large-
scale datacenter environment. The data is intended for training and evaluating machine learning models that 
predict whether a job submission will succeed or fail given the current cluster state and job resource request. 

The dataset was produced as part of the MLSysOps project (EU Horizon Europe) and supports research on: 

• job admission control, 
• failure prediction, 
• resource fragmentation, 
• and network feasibility in modern datacenter architectures. 

Each data sample represents a single scheduling decision and includes both: 

• detailed cluster state features, and 
• the observed outcome of the placement attempt. 

 

Simulated Datacenter Architecture 

The dataset is generated using a proprietary datacenter simulator modeling a hierarchical cluster composed of 
Scalable Units (SUs). 

Cluster configuration: 

• 32 Scalable Units (SUs) 
• 32 servers per SU (1024 servers total) 
• 8 leaf switches per SU 
• 8 GPUs per server 
• Leaf switches interconnected via a reconfigurable optical circuit switch (OCS) 

Failure Modes Captured 

Each job placement attempt can result in: 

• Successful placement 
• Failure due to insufficient servers 
• Failure due to insufficient or infeasible uplink connectivity 

While server insufficiency can be determined via simple capacity checks, uplink infeasibility is more complex, 
as it depends on: 
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• current optical circuit configurations, 
• contention between jobs, 
• and connectivity constraints of the OCS fabric. 

The dataset explicitly captures these outcomes to support learning-based approaches for failure prediction. 

Dataset Structure 

• Format: Apache Parquet 
• Granularity: One row per scheduling decision 
• Each row contains: 

1. Job request features 
2. Cluster state features (scalar + vector) 
3. Ground-truth placement outcome label 

Rows are treated as independent samples. 

Ground-Truth Labels 

The dataset includes a label column encoding the observed outcome of the job placement: 

Value Meaning 

0 Job placement succeeded 

1 Job placement failed due to insufficient servers 

2 Job placement failed due to insufficient uplinks / infeasible network connectivity 

Notes: 

• Labels 1 and 2 both indicate job failure, but with different root causes. 
• This encoding allows: 

o binary failure prediction, 
o failure cause analysis, 
o and future multi-class modeling. 

 

Feature Description 

Scalar Cluster Features 

These features summarize utilization, imbalance, and fragmentation across the cluster: 

Column Description 

f1_event_type The recorded event: add, failed_server, failed_uplink 

f2_mean_util Mean server utilization 

f3_diff_max_min_util Utilization imbalance across SUs 

f4_cv_util Coefficient of variation of server utilization 
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f5_ratio_max_to_mean_workload Workload skew across SUs 

f6_mean_uplink_util Mean uplink utilization 

f7_diff_max_min_uplink_util Uplink utilization imbalance 

f8_cv_uplink_util Coefficient of variation of uplink utilization 

f9_mean_combined_util Combined compute and network utilization 

f10_resource_imbalance Compute vs network mismatch 

f11_bottleneck_ratio Network-to-compute utilization ratio 

f12_frag_spread_sus Fragmentation due to SU spread 

f13_frag_wasted Fragmentation due to wasted capacity 

f14_frag_su_sparseness Intra-SU sparseness 

f15_total_servers_used Total servers in use 

f16_total_sus_used Number of active SUs 

f17_total_uplink_utilized Total uplink usage 

Vector Features 

Feature Description 

f18_su_server_bitmap Binary vector (length 1024) indicating per-server usage 

f19_leaf_up Vector (length 256) indicating leaf switch uplink utilization 

Job Request Feature 

Column Type Description 

f20_requested_nodes int / float Number of nodes requested by the job 

 

Feature Description 

Scalar Cluster Features 

These features summarize utilization, imbalance, and fragmentation across the cluster: 

Column Description 

f1_event_type The recorded event: add, failed_server, failed_uplink 
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f2_mean_util Mean server utilization 

f3_diff_max_min_util Utilization imbalance across SUs 

f4_cv_util Coefficient of variation of server utilization 

f5_ratio_max_to_mean_workload Workload skew across SUs 

f6_mean_uplink_util Mean uplink utilization 

f7_diff_max_min_uplink_util Uplink utilization imbalance 

f8_cv_uplink_util Coefficient of variation of uplink utilization 

f9_mean_combined_util Combined compute and network utilization 

f10_resource_imbalance Compute vs network mismatch 

f11_bottleneck_ratio Network-to-compute utilization ratio 

f12_frag_spread_sus Fragmentation due to SU spread 

f13_frag_wasted Fragmentation due to wasted capacity 

f14_frag_su_sparseness Intra-SU sparseness 

f15_total_servers_used Total servers in use 

f16_total_sus_used Number of active SUs 

f17_total_uplink_utilized Total uplink usage 

Vector Features 

Feature Description 

f18_su_server_bitmap Binary vector (length 1024) indicating per-server usage 

f19_leaf_up Vector (length 256) indicating leaf switch uplink utilization 

Job Request Feature 

Column Type Description 

f20_requested_nodes int / float Number of nodes requested by the job 

 

Data Collection Methodology 

• Environment: Simulated datacenter 
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• Workloads: Synthetic job traces with varying sizes and arrival patterns 
• Placement policy: Simulator-internal scheduling logic 
• Labeling: Determined by placement outcome (success or failure cause) 

The simulator executes job placement attempts under varying load, fragmentation, and network conditions to 
generate diverse training examples. The simulator itself is not publicly released. Only the resulting dataset is 
provided. 

Statistical Summary 

The dataset contains a total of 1,062,943 rows, each corresponding to a single job placement attempt in the 
simulated cluster. 

The table below summarizes the distribution of all numeric columns, including the ground-truth label. 

Column Summary and Data Types 

Descriptor Type Count Mean Std Min 25% 
50% 
(Media
n) 

75% Max 

l1_failed int32 1,062,9
43 

0.619
8 

0.712
7 0.0 0.0 0.0 1.0 2.0 

f2_mean_util float3
2 

1,062,9
43 

0.912
9 

0.108
9 

0.007
8 

0.890
6 

0.9404 0.971
7 

1.0 

f3_diff_max_min_util 
float3
2 

1,062,9
43 

0.584
3 

0.333
2 0.0 

0.281
3 0.5625 1.0 1.0 

f4_cv_util float3
2 

1,062,9
43 

0.198
2 

0.304
7 0.0 0.071

2 0.1446 0.250
0 

5.567
8 

f5_ratio_max_to_mean_wor
kload 

float3
2 

1,062,9
43 

1.186
5 

1.229
9 

1.0 1.029
1 

1.0633 1.122
8 

32.0 

f6_mean_uplink_util 
float3
2 

1,062,9
43 

0.563
7 

0.115
6 0.0 

0.519
5 0.5840 

0.636
7 

0.959
8 

f7_diff_max_min_uplink_ut
il 

float3
2 

1,062,9
43 

0.901
6 

0.171
7 0.0 0.812

5 0.9063 0.968
8 2.0 

f8_cv_uplink_util float3
2 

1,062,9
43 

0.468
1 

0.302
2 

0.0 0.352
6 

0.4258 0.507
6 

3.873
0 

f9_mean_combined_util 
float3
2 

1,062,9
43 

0.738
3 

0.100
2 

0.003
9 

0.713
9 0.7563 

0.791
5 

0.971
6 

f10_resource_imbalance float3
2 

1,062,9
43 

0.349
3 

0.101
0 

0.000
1 

0.280
3 0.3350 0.404

3 
0.892
6 
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f11_bottleneck_ratio float3
2 

1,062,9
43 

0.613
7 

0.113
7 

0.0 0.563
6 

0.6345 0.689
4 

1.737
8 

f12_frag_spread_sus 
float3
2 

1,062,9
43 

1.071
3 

0.081
8 1.0 

1.026
1 1.0524 

1.092
2 4.0 

f13_frag_wasted float3
2 

1,062,9
43 

0.071
3 

0.081
8 0.0 0.026

1 0.0524 0.092
2 3.0 

f14_frag_su_sparseness float3
2 

1,062,9
43 

0.017
7 

0.017
6 

0.0 0.006
5 

0.0135 0.023
5 

0.258
9 

f15_total_servers_used int64 1,062,9
43 

934.8
6 

111.4
7 8 912 963 995 1024 

f16_total_sus_used int64 1,062,9
43 31.11 3.10 1 31 32 32 32 

f17_total_uplink_utilized int64 1,062,9
43 

4617.
66 

946.6
3 

0 4256 4784 5216 7863 

f20_requested_nodes int64 1,062,9
43 54.96 38.77 8 20 44 87 128 

The l1_failed column encodes job outcomes as: 

• 0: success 
• 1: failure due to insufficient servers 
• 2: failure due to insufficient uplinks / infeasible connectivity 

Both 1 and 2 correspond to job failures. 

Working with the Data 

Loading the Dataset (Python) 

import pandas as pd 
df = pd.read_parquet("final_merged.parquet") 
print(df.head()) 

Loading Selected Columns 

cols = ["f20_requested_nodes", "f2_mean_util", "l1_failed"] 
df = pd.read_parquet("final_merged.parquet", columns=cols) 

Tools and Documentation 

Apache Parquet specification: https://parquet.apache.org/docs 

Pandas Parquet I/O: https://pandas.pydata.org/docs/reference/api/pandas.read_parquet.html 

PyArrow Parquet support: https://arrow.apache.org/docs/python/parquet.html 
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Intended Use 

This dataset is intended for: 

• machine learning research on job failure prediction, 
• benchmarking admission-control models, 
• studying resource fragmentation and network feasibility, 
• offline evaluation of scheduling heuristics. 

It is not intended to represent any specific production datacenter. 

Limitations 

• Data is generated from a simulator, not a production system. 
• The cluster topology is fixed and may not generalize to other architectures. 
• Temporal dependencies between jobs are not explicitly modeled. 
• Network behavior is abstracted and may differ from real optical fabrics. 
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2.8 FPGA Telemetry Dataset for ML Inference Experiments on AMD/Xilinx ZCU102 MPSoC 
Development Board 

2.8.1 Link 

https://zenodo.org/records/18494461 

2.8.2 Citation 

Patras, A. (2026). UTH FPGA Telemetry Dataset for ML Inference Experiments on AMD/Xilinx ZCU102 
MPSoC Development Board (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18494461 

2.8.3 More details 

This dataset contains telemetry traces from repeated machine learning inference experiments executed on a 
Xilinx ZCU102 FPGA platform. Each experiment corresponds to a specific DPU bitstream configuration (DPU 
size and number of DPU compute units), a model variant (including pruning variants), and a system workload 
mode applied on the ARM CPU. 

The dataset is intended to support research on: 

• FPGA-based ML inference performance, 
• DPU scaling and configuration trade-offs, 
• interaction between FPGA accelerators and ARM CPU workloads, 
• power, memory bandwidth, and system-level telemetry analysis. 

Each experiment produces a time-series telemetry trace recorded during a batch inference run. 

Dataset Structure 

The dataset is organized into two main components: 

• experiments.csv — index file 
One row per experiment run, describing its configuration. 

• data/<experiment_id>.csv — telemetry trace 
Time-series telemetry recorded during the corresponding experiment. 

 

experiments.csv is the entry point to the dataset. Each row describes one complete experiment run on the 
FPGA. 

 

Index Columns 

Column Description 

Experiment ID Unique identifier for the experiment run. Used to locate the trace at 
data/<experiment_id>.csv. 

DPU CU# Number of DPU compute units (parallel inference threads). 

DPU Size DPU configuration size. The dataset includes 8 sizes and 26 total configurations when 
combined with CU counts. 
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Model Model executed during the experiment. Pruning variants are encoded in the name (e.g., 
resnet18-25 for 25% pruning). 

Workload Mode 
Background workload on the ARM CPU: None, C-H (compute-bound), or M-H (memory-
bound). 

 

Experiments Overview 

Aspect Description 

Hardware platform Xilinx ZCU102 MPSoC Development Board 

DPU configurations 26 total (8 DPU sizes × multiple CU counts) 

Models 12 models with pruning variants (-25, -50, or none) 

Run duration From seconds up to ~10 minutes 

Execution mode Batch inference 

Each row in experiments.csv corresponds to one full experiment run on the development board. 

 

Telemetry Traces — data/<experiment_id>.csv 

Each telemetry file contains a time series of system and inference measurements recorded during the experiment. 

Time Columns 

Column Description 

timestamp Unix timestamp (seconds, fractional) when the telemetry row was recorded. 

timestamp_human Human-readable timestamp of the same moment. 

These represent the actual time at which telemetry was sampled. 

 

Per-Thread Performance Columns (*_K) 

Many columns are indexed by K, representing per-DPU compute unit (per inference thread) measurements. 
K ranges from 1 to DPU CU#. 

Column Pattern Description 

preprocessing_time_K Preprocessing latency for inference thread K. 

inference_time_K Inference latency for thread K. 
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postprocessing_time_K Postprocessing latency for thread K. 

job_id_K Identifier of the inference job executed on thread K. 

fps_K Frames-per-second observed for thread K. 

 

Memory Bandwidth Telemetry (ZCU102 Ports) 

Column Description 

S0_read … S4_read Read bandwidth for memory ports 0–4. 

S0_write … S4_write Write bandwidth for memory ports 0–4. 

 

Power Telemetry 

Column Description 

arm_power Instantaneous power consumption of the ARM CPU subsystem. 

fpga_power Instantaneous power consumption of the FPGA fabric. 

 

CPU Utilization (ARM Cortex-A53) 

Column Description 

cpu_0, cpu_1, cpu_2, cpu_3 Utilization of the four ARM Cortex-A53 cores. 

 

Memory Metrics 

Column Description 

memory_available Available system memory at sampling time. 

memory_total Total system memory. 

swap_free Free swap space. 

 

Experiment Linkage 

Column Description 
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experiment_id Experiment identifier matching the filename and the index in experiments.csv. 

 

How to Use the Dataset 

• Select an experiment from experiments.csv based on: 
o DPU configuration (DPU Size, DPU CU#) 
o model variant (Model) 
o workload mode (Workload Mode) 

• Open the corresponding telemetry trace: 
o data/<experiment_id>.csv 

• Analyze: 
o inference latency breakdown (pre / infer / post), 
o per-thread throughput (fps_K), 
o memory bandwidth usage (S*_read, S*_write), 
o CPU utilization and power behavior under different workloads. 

 

Intended Use 

This dataset is intended for: 

• FPGA performance analysis, 
• ML inference benchmarking, 
• system-level telemetry studies, 
• research on accelerator–CPU interaction. 

It represents a controlled experimental environment, not a production deployment. 
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3 MLSysOps Produced Models 

On this section we introduce in detail every model that is made public in the context of MLSysOps. For every 
entry we provide the Zenodo and the GitHub links, the citation that was produced by Zenodo when the dataset 
was uploaded as well as copied information from the Zenodo entry. 

All models developed are openly available both in the Zenodo community and the GitHub organization. 

MLSysOps Zenodo Community: https://zenodo.org/communities/mlsysops 

MLSysOps GitHub Organization: https://github.com/mlsysops-eu 

 

3.1 Cluster VM Management Model 

3.1.1 Links 

Zenodo: https://zenodo.org/records/18177473 

Github: https://github.com/mlsysops-eu/model-cluster-vm-management 

 

3.1.2 Citation 

Aslanidis, T., & Chatzopoulos, D. (2026). UCD Cluster VM Management Model (ONNX) (v1.0.0). Zenodo. 
https://doi.org/10.5281/zenodo.18177473 

 

3.1.3 More details 

This repository contains a Deep Reinforcement Learning agent (trained using Maskable PPO) for optimizing 
Virtual Machine placement and lifecycle management. The model is exported as a platform-independent ONNX 
file for easy deployment. 

It includes a complete inference pipeline that handles raw JSON infrastructure states, serializes them for the 
neural network, and translates the output into human-readable actions. 

Project Structure 

. 
├── model/ 
│   ├── vm_management_agent.onnx   # The trained Neural Network 
│   └── model_config.json           # Model Card & Configuration 
├── src/ 
│   ├── inference_engine.py        # Wraps ONNX runtime for predictions 
│   ├── infra_state_serializer.py  # Converts JSON tree -> 801-dim Float Vector 
│   └── action_interpreter.py       # Converts Model Output -> Human-readable 
Strings 
├── demo.py                                # Main entry point to run all test 
scenarios 
├── generate_scenarios.py          # Script to generate test JSON files 
├── requirements.txt                    # Python dependencies 
└── README.md 
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Limitations & Model Constraints 

This agent is specialized for a specific environment configuration. The model weights are tied to these boundary 
conditions: 

 

Installation 

It is recommended to use a virtual environment to keep dependencies isolated. 

1. Clone the Repository 

git clone https://github.com/tgasla/MLSysOps-VM-Management-Agent.git 
cd MLSysOps-VM-Management-Agent 

2. Create and Activate Virtual Environment 

Linux / macOS: 

python3 -m venv venv 
source venv/bin/activate 

Windows (PowerShell): 

python -m venv venv 
.\venv\Scripts\Activate.ps1 

3. Install Dependencies 

pip install -r requirements.txt 

Quick Start 

To verify the agent is working, simply run the demo script. This will automatically check for test scenarios (and 
generate them if missing) and run the agent against them. 

python demo.py 

Output Example: 

--- 🧪 Testing Scenario: scenario_2.json --- 
📥 Input Job Req: 8 cores 
🤖 Raw Action:    [1 3 2 2] 

✨ Action: Create VM 
   -> Location: Host 3 
   -> VM Type:  Large (ID: 2) 

Python Usage Guide 

If you want to integrate this agent into your own application, here is the standard workflow: 



MLSysOps                       D6.4 MLSysOps Open Datasets 

        38
  

import json 
from src.inference_engine import MLSysOpsVMManagementAgent 
from src.infra_state_serializer import InfraStateSerializer 
from src.action_interpreter import ActionInterpreter 
 
# 1. Initialize Components 
# (Paths are relative to where you run the script) 
config_path = "model/model_config.json" 
model_path = "model/vm_management_agent.onnx" 
 
agent = MLSysOpsVMManagementAgent(model_path, config_path) 
serializer = InfraStateSerializer(config_path) 
interpreter = ActionInterpreter(config_path) 
 
# 2. Load Infrastructure State 
# You can pass a dictionary or a file path 
with open("scenario_1.json", "r") as f: 
    state_data = json.load(f) 
 
# 3. Prepare Inputs 
# Serialize the complex tree structure into the model's expected vector 
infra_vector = serializer.serialize(state_data) 
# Get the pending job requirements (scalar) 
job_req = state_data.get("total_job_cores_waiting", 0) 
 
# 4. Predict 
# The agent returns a raw discrete vector (e.g., [1, 12, 0, 2]) 
raw_action = agent.predict(infra_vector, job_req) 
 
# 5. Interpret 
# Convert raw numbers into a meaningful string 
explanation = interpreter.humanify(raw_action) 
 
print(f"Agent Recommendation: {explanation}") 

 Test Scenarios 

The generate_scenarios.py script creates three distinct situations to test the AI's decision-making: 

• Scenario 1: 32 Hosts (Empty) + 0 Waiting Jobs. 
o Expectation: Do Nothing. 

• Scenario 2: 8 Hosts (Empty) + 8 Cores Waiting. 
o Expectation: Create a VM (likely Large) on any available host. 

• Scenario 3: 16 Hosts (Populated with VMs) + 0 Waiting Jobs. 
o Expectation: Destroy a VM. 
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Configuration & Model Card 

The file model/model_config.json serves as the Model Card. It defines the exact input/output 
specifications and schema the model was trained on. 

Important: You are not expected to change this file. The ONNX model's weights are permanently tied to these 
dimensions and definitions. 

• vector_length: 801 (The fixed input array size). 
• action_decoding: Maps the model's integer outputs to human-readable names (e.g., ID 0 -> "Small", ID 

2 -> "Large"). 
• hardware_definitions: Defines the VM types/flavors the model learned to manage. 
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3.2 5G Jamming Attack Detection Model 

3.2.1 Links 

Zenodo: https://zenodo.org/records/18266543 

Github: https://github.com/mlsysops-eu/model-5g-jamming-detection 

 

3.2.2 Citation 

Xu, J., Moheddine, A., Loscri, V., Brighente, A., & Conti, M. (2026). INRIA 5G Jamming Attack Detection - 
LSTM Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18266543 

 

3.2.3 More details 

This model was developed by INRIA as part of the SHIELD framework: 

SHIELD is a research framework designed to evaluate machine-learning-based approaches for detecting 
jamming and interference in 5G networks under realistic conditions. 

For a detailed description of the framework, methodology, and experimental setup, see the: 

Paper: SHIELD: Scalable and Holistic Evaluation Framework for ML-Based 5G Jamming Detection 

Source Code: https://github.com/mlsysops-eu/model-physical-layer-authentication 

Authors 

• Jiali Xu (Inria Centre at the University of Lille) 
• Aya Moheddine (Inria Centre at the University of Lille) 
• Valéria Loscrì (Inria Centre at the University of Lille) 
• Alessandro Brighente (Department of Mathematics, University of Padova) 
• Mauro Conti (Department of Methematics, University of Padova) 

 

Purpose 

This model performs real-time detection of 5G jamming and signal degradation events based on time-series 
telemetry collected from a mobile device. 

It outputs a probability score indicating whether the observed signal behavior is normal or anomalous, where 
anomalies may correspond to intentional jamming, interference, or severe radio conditions. 

The model is designed to run continuously on streaming data and make decisions at fixed inference intervals. 

 

Training Data 

The model was trained on time-series logs collected from a real Android device (OnePlus Nord 2T 5G) operating 
under both normal and degraded radio conditions. 

This dataset is publicly available on Zenodo: INRIA SHIELD Framework Dataset - 5G Jamming Attack 
Detection 
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Training data characteristics: 

• Collected from live 5G operation 
• Includes periods of: 

o Normal network behavior 
o Signal degradation 
o Interference-like patterns consistent with jamming scenarios 

• Derived features are computed from four signal sources: 
o Extended Cell Signal Quality (ECSQ) 
o Thermal sensors 
o RF transmission power 
o Radio signal metrics (RSRP, RSRQ, SINR) 

Each sample consists of a fixed-length time window (typically 10 seconds), where multiple aggregation 
functions are applied to raw signals to capture both short-term dynamics and variability. 

Note: Since the model is trained on data from a specific device and chipset, performance may vary on other 
devices without retraining or domain adaptation. 

 

Model Architecture 

The model is a sequence-based neural network built around a Long Short-Term Memory (LSTM) backbone, 
making it suitable for learning temporal dependencies in time-series signal data. 

High-level architecture: 

• 2 stacked LSTM layers (hidden size: 50) 
• Dropout (0.4) for regularization 
• Sigmoid output layer for binary classification 

 

For more information about the model architecture, check the model/model_config.json 

The network processes a window of aggregated signal features over time and produces a single anomaly 
probability score for the entire sequence. 

Preprocessing (RobustScaler normalization) is integrated directly into the ONNX model, ensuring consistent 
behavior between training and inference. 

 

Model Specification 

Inputs & Outputs 

Input: 

• Data Type: float32 
• Shape: [batch_size, seq_len, 60] 

o batch_size: Number of samples (typically 1 for real-time inference) 
o seq_len: Sequence length, typically 10 time steps (10 seconds with 1s resampling) 
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o 60: Number of features derived from 4 signal sources with 5 aggregation methods each 
• Feature Composition: 

o ECSQ (Extended Cell Signal Quality): 6 features × 5 aggregations = 30 features 
o Thermal sensors: 2 features × 5 aggregations = 10 features 
o RF transmission power: 1 feature × 5 aggregations = 5 features 
o Signal strength (RSRP, RSRQ, SINR): 3 features × 5 aggregations = 15 features 

• Aggregation Methods: mean, max, min, std, amplitude 
• Preprocessing: RobustScaler normalization (integrated in ONNX models, separate for PyTorch 

models) 
Output: 

• Data Type: float32 
• Shape: [batch_size, 1] 
• Range: [0.0, 1.0] (probability score via sigmoid activation) 
• Interpretation: 

o Score > 0.5: ANOMALY (potential jamming detected) 
o Score ≤ 0.5: NORMAL (no jamming detected) 

Limitations 

• Sequence Length: The model expects time series data with a minimum sequence length. Shorter 
sequences may produce unreliable results. 

• Feature Count: Input must have exactly 60 features. Missing or extra features will cause inference to 
fail. 

• Data Quality: The model assumes continuous data streams. Large gaps or missing data may affect 
accuracy. 

• Domain Specificity: Trained on specific Android device logs (OnePlus Nord 2T). Performance may 
vary on different devices without retraining. 

• Real-time Constraints: Inference interval (default 5s) must be longer than preprocessing + inference 
time to avoid queue buildup. 

• Buffer Dependencies: Requires all 4 buffer types (ecsq, thermal, erftx, signal) to be populated for 
accurate predictions. 

 

Model Execution 

1. Create and activate a python virtual environment 

python3.13 -m venv venv 
source venv/bin/activate 

2. Install dependencies 

pip install -r requirements.txt 

3. Run Inference 

import onnxruntime as ort 
import numpy as np 
 
# Load model 
session = ort.InferenceSession("model/lstm_jd_model.onnx") 
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# Prepare input (example: batch=1, seq_len=10, features=60) 
input_data = np.random.randn(1, 10, 60).astype(np.float32) 
 
# Run inference 
input_name = session.get_inputs()[0].name 
output = session.run(None, {input_name: input_data})[0] 
 
# Interpret result 
probability = output[0][0] 
prediction = "ANOMALY" if probability > 0.5 else "NORMAL" 
print(f"Prediction: {prediction} (score: {probability:.4f})") 
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3.3 RF Fingerprinting Models for Physical Layer Authentication 

3.3.1 Links 

Zenodo: https://zenodo.org/records/18280776 

GitHub: https://github.com/mlsysops-eu/model-physical-layer-authentication 

3.3.2 Citation 

Alla, I., Yahia, S., Loscri, V., & eldeeb, . hossien . (2026). INRIA RF Fingerprinting Model Collection for 
Physical Layer Authentication (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18280776 

3.3.3 More Details 

This repository contains a comprehensive collection of machine learning models developed by INRIA. 

These models implement Physical Layer Authentication (PLA) using RF Fingerprinting. They are designed 
to secure wireless networks by identifying devices based on the unique physical characteristics (fingerprints) of 
their radio hardware, rather than just their digital credentials. 

This record provides a "Model Zoo" covering various experimental scenarios (Trials), machine learning 
architectures, and feature selection techniques. 

For a detailed description of the framework, methodology, and experimental setup, see the: 

Paper: Robust Device Authentication in Multi-Node Networks: ML-Assisted Hybrid PLA Exploiting Hardware 
Impairments  

Source Code: https://github.com/mlsysops-eu/model-physical-layer-authentication 

Authors 

• Ildi Alla (Inria Centre at the University of Lille) 
• Selma Yahia (Inria Centre at the University of Lille) 
• Valéria Loscrì (Inria Centre at the University of Lille) 
• Hossien Eldeeb (University of Cambridge) 

Purpose 

These models perform Binary Classification to distinguish between trusted and malicious devices: 

• Authorized (Target): The specific device allowed to access the network. 
• Rogue (Malicious): An attacker, imposter, or unknown device trying to mimic a trusted node. 

The models are exported in ONNX format (Opset 18) to ensure interoperability and are designed to run on edge 
devices for real-time authentication. 

Repository Structure 

Since this repository contains multiple models, the files are organized using the following directory structure: 

/models 
    ├── /trial_1                 # Experimental Scenario 1 
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    │     ├── /random_forest 
    │     │     ├── /pca         # Feature Selection Method: PCA 
    │     │     │     └── model_device3.onnx 
    │     │     └── /anova       # Feature Selection Method: ANOVA 
    │     │           └── ... 
    │     └── /xgb 
    │           └── ... 
    ├── /trial_2                 # Experimental Scenario 2 
    └── ... 

• Trial: Corresponds to specific experimental setups (specific sets of authorized vs. rogue devices). 
• Model Type: The architecture used (e.g., xgb, svc, knn). 
• Feature Selection: The method used to reduce the input vector size (e.g., pca, anova, mutual_info). 
• Filename: Indicates the specific device ID the model was trained to authenticate (e.g., 

model_device3.onnx protects Device 3). 

Training Data 

The models were trained on raw I/Q signal data collected using a BladeRF AX4 Software Defined Radio (SDR) 
and GNU Radio. The dataset captures the "transient" phase of RF signals (the turn-on/turn-off characteristics), 
which contains the most distinctive hardware impairments used for fingerprinting. 

This dataset is publicly available on Zenodo: 

INRIA I/Q Signal Dataset for RF Fingerprinting and Physical Layer Authentication 

Training data characteristics: 

• Source Hardware: BladeRF AX4 (20 MHz sampling rate). 
• Signal Processing: Transient detection, Low-pass filtering, Discrete Gabor Transform (DGT). 
• Input Features: Statistical moments (Variance, Skewness, Kurtosis, Entropy) extracted from diagonal 

patches of the spectrogram. 

Model Architecture 

This collection includes the following architectures, all converted to standard ONNX format: 

• XGBoost (XGB): Gradient boosting for high-performance classification. 
• Random Forest (RF): Ensemble learning method using decision trees. 
• Support Vector Classifier (SVC): Polynomial kernel SVM. 
• K-Nearest Neighbors (KNN): Instance-based learning. 
• Logistic Regression: Linear model for baseline comparison. 

Specific hyperparameters (e.g., number of trees, kernel type) for each architecture can be found in the 
models/model_config.json file included in this record. 

Model Specification (Common Interface) 

All models in this collection share the same input/output interface specifications: 
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Inputs 

• Data Type: float32 
• Shape: [batch_size, n_features] 
• batch_size: Number of samples (typically 1 for real-time inference). 
• n_features: Dynamic. This depends on the specific model file selected (e.g., a PCA model might expect 

20 features, while an ANOVA model might expect 50). 
• Note: You must check the expected input shape of the specific .onnx file before feeding data. 

Outputs 

• Data Type: int64 (Label) and float32 (Probabilities) 
• Shape: [batch_size, 1] 
• Interpretation: 

o Label 0: ROGUE / MALICIOUS DEVICE (Access Denied) 
o Label 1: AUTHORIZED / TRUSTED DEVICE (Access Granted) 

Limitations 

• Feature Dependency: The input must be a feature vector extracted using the specific Gabor Transform 
& Statistical parameters defined in the paper. Raw I/Q samples cannot be used directly. 

• Device Specificity: A model named model_device3.onnx is trained only to recognize Device 3. It will 
treat all other devices (even other trusted ones) as "Rogue" relative to Device 3. 

Usage Demo 

To run any model from this collection, use the provided inference_demo.py script. 

1. Setup Environment 

python3.13 -m venv venv 
source venv/bin/activate 
pip install -r requirements 

2. Run Inference 

Select a specific model file from the folder structure and run: 

import onnxruntime as ort 
import numpy as np 
 
# 1. Select your model file 
model_path = "./models/trial_1/xgb/pca/model_device3.onnx" 
session = ort.InferenceSession(model_path) 
 
# 2. Check how many features this specific model needs 
input_meta = session.get_inputs()[0] 
n_features = input_meta.shape[1] 
print(f"Selected model expects {n_features} features.") 
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# 3. Generate input (Replace with actual calculated features) 
# Shape: [1, n_features] 
dummy_input = np.random.rand(1, n_features).astype(np.float32) 
 
# 4. Run Inference 
outputs = session.run(None, {input_meta.name: dummy_input}) 
predicted_label = outputs[0][0] 
 
# 5. Interpret 
if predicted_label == 1: 
    print("✅ ACCESS GRANTED: Authorized Device Detected") 
else: 
    print("🚨 ALERT: Rogue/Malicious Device Detected") 
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3.4 SkyFlok Latency Prediction Models 

3.4.1 Links 

Zenodo: https://zenodo.org/records/18288840 

GitHub: https://github.com/mlsysops-eu/model-storage-gateway-speed-prediction 

3.4.2 Citation 

University College Dublin, & Chocolate Cloud. (2026). Chocolate Cloud SkyFlok Latency Prediction: Gradient 
Boosting Models (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18288840 

3.4.3 More details 

This repository contains a collection of machine learning models developed in collaboration between University 
College Dublin (UCD) and Chocolate Cloud (CC). 

These models are deployed within the SkyFlok Gateway component (hosted in London). They perform Latency 
Prediction to estimate the time required to retrieve a file from specific cloud storage backends. 

By predicting download times based on temporal patterns and file size, these models enable the Gateway to 
intelligently route download requests to the fastest available storage region. This minimizes retrieval latency 
and optimizes network efficiency for the end user. 

The models are exported in ONNX format (Opset 18) to ensure high-performance, low-latency inference within 
the real-time routing logic. 

Purpose 

These models perform Regression to predict a continuous value: 

• Input: File size and detailed timestamps (Hour, Day, Time of Day). 
• Output: Estimated Transfer Time (Latency) in milliseconds. 

 

Repository Structure & Backend Mapping 

Since latency characteristics vary between cloud providers, a separate model is trained for each storage backend. 
Use the table below to identify which model corresponds to which cloud provider/region. 

Backend 
ID 

Model Filename Cloud 
Provider 

Region Location 

4 model_backend_id_4.onnx Google Cloud 
europe-
west1 

St. Ghislain, Belgium 🇧🇪 

20 model_backend_id_20.onnx AWS eu-west-1 Dublin, Ireland 🇮🇪 

39 model_backend_id_39.onnx 
Microsoft 
Azure 

WEST 
EUROPE 

Amsterdam, Netherlands 
🇳🇱 

79 model_backend_id_79.onnx OVH Cloud GRA Gravelines, France 🇫🇷 
137 model_backend_id_137.onnx Exoscale Geneva Geneva, Switzerland 🇨🇭 
144 model_backend_id_144.onnx Scaleway Warsaw Warsaw, Poland 🇵🇱 
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Directory Layout 

/models 
    ├── model_backend_id_4.onnx    # Model for Backend ID 4 
    ├── model_backend_id_20.onnx   # Model for Backend ID 20 
    ├── model_backend_id_39.onnx   # ... 
    ├── model_backend_id_79.onnx 
    ├── model_backend_id_137.onnx 
    └── model_backend_id_144.onnx 
    └── model_config.json          # Hyperparameters & metadata 

 

Training Data 

The models were trained on historical transfer logs collected from the SkyFlok platform. 

The dataset captures real-world network performance metrics across different times of day and days of the week. 

Features Used: 

• Workload: File size (bytes). 
• Temporal: Time of day (categorical: morning, afternoon, etc.), Hour, Minute, Second, Day of Week. 

 

Model Architecture 

These models utilize a Scikit-Learn Pipeline architecture, fully converted to ONNX: 

1. Preprocessing: A ColumnTransformer that handles mixed data types (One-Hot Encoding for strings, pass-
through for numbers).  

2. Regressor: Gradient Boosting Regressor (2000 trees, Max Depth 12). 

This architecture allows the model to capture complex, non-linear relationships between network congestion 
(time of day) and transfer speeds. 

 

Model Specification (Common Interface) 

All models in this collection share the same input/output interface specifications. 

Inputs 

The models accept a dictionary of standard Python lists. 

Input Name Type Shape Description Example 
time_of_day String [batch, 1] Categorical time block "morning", "night" 
hour Int64 [batch, 1] Hour of the day (0-23) 14 
minute Int64 [batch, 1] Minute of the hour 30 
second Int64 [batch, 1] Second of the minute 45 
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day_of_week String [batch, 1] Full day name "Monday", "Friday" 
size Float32 [batch, 1] File size in Bytes 100000.0 

Outputs 

• Name: predicted_latency 
• Data Type: float32 
• Shape: [batch_size, 1] 
• Unit: Milliseconds (ms) 

Limitations 

• Backend Specificity: model_backend_id_4.onnx is trained specifically on the performance history of 
Backend #4. It should not be used to predict latency for other backends. 

• Historical Bias: Predictions are based on historical trends; sudden network outages or unprecedented 
congestion events may result in prediction errors. 

 

Usage Demo 

To run any model from this collection, follow the steps below. 

1. Setup Environment 

python3.13 -m venv venv 
source venv/bin/activate 
pip install onnxruntime 

2. Run Inference 

python inference_demo.py 

If you prefer to integrate it into your own application, here is the minimal code required: 

import onnxruntime as ort 
from datetime import datetime 
 
# --- Configuration --- 
backend_id = 4 
file_size = 100000.0  # 100 KB 
 
# --- Helper --- 
def get_time_of_day(hour): 
    if 5 <= hour < 12: return 'morning' 
    elif 12 <= hour < 17: return 'afternoon' 
    elif 17 <= hour < 21: return 'evening' 
    return 'night' 
 
# --- 1. Prepare Input --- 
# Note: Double brackets [[ ]] create the required batch dimension (Batch=1) 
t = datetime.now() 
inputs = { 
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    'time_of_day': [[get_time_of_day(t.hour)]], 
    'hour':        [[t.hour]], 
    'minute':      [[t.minute]], 
    'second':      [[t.second]], 
    'day_of_week': [[t.strftime('%A')]], 
    'size':        [[file_size]] 
} 
 
# --- 2. Run Inference --- 
session = ort.InferenceSession(f"models/model_backend_id_{backend_id}.onnx") 
result = session.run(None, inputs) 
 
print(f"Predicted Latency: {result[0][0][0]:.2f} ms") 
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3.5 Smart Lamppost Noise Prediction Model 

3.5.1 Links 

Zenodo: https://zenodo.org/records/18290725 

GitHub: https://github.com/mlsysops-eu/model-smart-lamppost-noise-prediction 

 

3.5.2 Citation 

Moti, M. H., Aslanidis, T., & Ubiwhere (Portugal). (2026). Ubiwhere Smart Lamppost Noise Prediction LSTM 
Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18290725 

 

3.5.3 More details 

This repository contains a machine learning model developed in collaboration between University College 
Dublin (UCD) and Ubiwhere as part of the MLSysOps project. 

The model is deployed on edge devices within Smart Lampposts in Aveiro, Portugal. It performs Noise 
Level Prediction to estimate future environmental noise levels based on real-time traffic and pedestrian 
activity. 

By predicting noise levels in advance, this model enables proactive urban management, such as dynamic 
lighting adjustment or alerting city operators to potential noise pollution events before they escalate. 

The model is exported in ONNX format (Opset 18) to ensure high-performance, low-latency inference on 
edge hardware (e.g., NVIDIA Jetson). 

Purpose 

This model performs Time-Series Regression to predict a continuous value: 

• Input: A sequence of past 30 readings (Noise Level, Cars, Motorcycles, People). 
• Output: Predicted Noise Level (dB) for the next time step. 

 

Repository Structure 

The repository provides the trained model and its configuration for easy deployment. 

. 
├── inference_demo.py      # Full inference script (loads config and model) 
├── model/                 # Directory containing the ONNX model and config 
│   ├── noise_model.onnx 
│   └── model_config.json 
├── requirements.txt       # Python dependencies 
└── README.md              # Project documentation 
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Training Data 

The model was trained on real-world sensor data collected by Ubiwhere from a Smart Lamppost installed in 
Aveiro, Portugal. 

The Smart Lamppost is a modular urban infrastructure equipped with video and sound sensors (camera and 
microphone) to capture environmental and traffic-related data. 

Time Period: 2025-08-22 to 2025-08-29 

The complete training dataset is publicly available on Zenodo: Ubiwhere Smart Lamppost Dataset 

Features Used 

The model uses a multivariate approach, correlating traffic density with noise levels: 

1. Noise Level (Target): Measured environmental noise (dB). 

2. Car Detections: Count of cars detected. 

3. Motorcycle Detections: Count of motorcycles detected. 

4. Person Detections: Count of pedestrians detected. 

Note: Other metrics present in the raw dataset (CPU Usage, Jetson Energy, Temperature, etc.) were excluded 
to focus purely on the noise-traffic relationship 

Model Architecture 

This model utilizes a Multivariate Long Short-Term Memory (LSTM) network, fully converted to ONNX: 

1. Input Layer: Accepts a sequence of shape (Batch, 30, 4) (30 time steps, 4 features).  

2. LSTM Layers: Two stacked LSTM layers with 64 hidden units each to capture temporal dependencies.  

3. Output Layer: A Linear layer that maps the final hidden state to a single scalar prediction (Noise Level). 

This architecture allows the model to understand "inertia" (e.g., noise tends to stay high) and "causality" (e.g., 
a spike in cars leads to a spike in noise). 

Model Specification 

Inputs 

The model accepts a single tensor representing a history window. 

Input Name Shape Type Description 
input [batch_size, 30, 4] float32 Normalized history of the last 30 time steps. 
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Feature Order (Last Dimension): 

1. Noise Level 
2. Car Detections 
3. Motorcycle Detections 
4. Person Detections 

 

Outputs 

Output 
Name Shape Type Description 

input [batch_size, 1] float32 Normalized predicted noise level for the next step. 

 

Limitations 

• Normalization Required: The model expects input values normalized between 0 and 1. Raw sensor 
data must be scaled using the min/max values found in model_config.json before inference. 

• Location Specific: This model is trained on data from a specific street in Aveiro. Deploying it in a 
different environment (e.g., a highway or a quiet park) may require fine-tuning. 

Usage Demo 

To run this model, follow the steps below. 

1. Setup Environment 

python3.13 -m venv venv 
source venv/bin/activate 
pip install -r requirements.txt 

2. Run Inference Script 

Alternatively, you can directly run the script included in this Zenodo record to see a demonstration: 

python inference_demo.py 
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3.6 Drone Deployment Prediction Model 

3.6.1 Links 

Zenodo: https://zenodo.org/records/18299548 

GitHub: https://github.com/mlsysops-eu/model-drone-deployment-prediction 

3.6.2 Citation 

Chouliaras, A., Aslanidis, T., & Augmenta (acquired by CNH Industrial). (2026). Augmenta Drone Deployment 
Prediction Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18299548 

 

3.6.3 More details 

This repository contains a machine learning model developed by University College Dublin (UCD) for 
Augmenta (acquired by CNH Industrial) as part of the MLSysOps project, focusing on drone deployment 
prediction. 

The model predicts the should_fly signal for drone operations, leveraging temporal sensor and flight data to 
anticipate deployment needs ahead of time. This enables proactive drone management, accounting for 
operational delays and improving decision-making in real-world scenarios. 

The model is exported in ONNX format (Opset 15) for efficient inference on edge or cloud devices. 

Purpose 

This model performs Time-Series Classification to predict a binary signal: 

• Input: A vector of features including temporal lagged variables and flight parameters (e.g., sensor fault 
probability, success rate, velocity, heading). 

• Output: Predicted binary signal should_fly indicating if the drone should deploy or not at the forecast 
horizon. 

 

Repository Structure 

The repository provides the trained model and its configuration for easy deployment. 

. 
├── inference_demo.py      # Full inference script 
├── model/                 # Directory containing the ONNX model and config 
│   ├── drone_deployment_xgboost_model.onnx 
│   └── model_config.json 
├── requirements.txt       # Python dependencies 
└── README.md              # Project documentation 

 

Training Data 

The model was trained on drone deployment data capturing sensor readings and flight parameters with temporal 
dependencies engineered as lag features. 
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• Data Characteristics: Time-stamped data with features such as sensor fault probability, success rate, 
processing performance, velocity, and heading. 

• Prediction Horizon: Forecasts the should_fly signal several time steps ahead to mimic real deployment 
delays. 

The complete training dataset is publicly available on Zenodo: Augmenta Tractor-Drone Co-Robotics Dataset 
for Weed Detection 

Features Used 

The model uses a rich feature set including: 

• Temporal lags of: 
o sensor_fault_probability_1 
o success_rate 
o processing_performance 
o velocity 
o heading 
o Time metadata: year, month, hour 
o Time since last sensor fault and heading changes 
o Median fixed heading value 

 

Model Architecture 

This model utilizes an XGBoost classifier: 

• Boosting rounds: 200 estimators 
• Max tree depth: 5 
• Learning rate: 0.1 
• Objective: Binary logistic regression (binary classification) 

The model captures complex temporal and non-linear relationships in sensor data to predict drone deployment 
signals accurately. 

Model Specification 

Inputs 

The model accepts a single tensor representing the feature vector. 

Input Name Shape Type Description 
float_input [batch_size, 44] float Vector of features including lags & metadata 

Feature Order (Last Dimension): 

List of 44 feature names is included in the model/model_config.json under "features": {"names": [...]}. 
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Outputs 

Output Name Shape Type Description 
label [batch_size] int64 Predicted class (0 or 1) 
probabilities [batch_size, 2] float32 Class probabilities 

Limitations 

• No scaling applied: Model expects raw or preprocessed feature vectors matching training distributions. 
• Domain Specific: Trained specifically for the drone deployment dataset and operational settings used; 

transfer to other drone types or environments may require retraining. 

Usage Demo 

Setup Environment 

python3.13 -m venv venv 
source venv/bin/activate 
pip install -r requirements.txt 

Run Inference Script 

python inference_demo.py 

This script loads the model and performs prediction on sample input data. 
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3.7 5G Latency Optimization Prediction Model 

3.7.1 Links 

Zenodo: https://zenodo.org/records/18303750 

GitHub: https://github.com/mlsysops-eu/model-5g-network-optimization 

 

3.7.2 Citation 

Pazienza, A. (2026). NTT DATA 5G Latency Optimization RL Prediction Model (ONNX) (v1.0.0). Zenodo. 
https://doi.org/10.5281/zenodo.18303750 

 

3.7.3 More details 

This repository contains a machine learning model developed by NTT DATA. 

This artifact provides an ONNX export (opset 18) of a Deep Q-Network (DQN) agent trained to select the 
best data center (among 3) for a client request in a 5G/MEC setting, optimizing latency-related outcomes (and 
incorporating carbon intensity as a feature). 

Given the current state of three candidate data centers, the model outputs Q-values for each possible selection 
and chooses the data center with the highest Q-value. 

 

Purpose 

This model performs a Reinforcement Learning agent that predict a discrete value: 

• Input: A normalized tensor representing the current state of three candidate data centers, shaped as 
(3 × 10), where each row corresponds to a data center and each column represents a feature such as 
client identifier, resource utilization, network metrics, latency statistics, packet loss, and carbon 
intensity. The input is MinMax-scaled using parameters learned during training and includes a label-
encoded client identifier. 

• Output: A discrete action in {0, 1, 2} corresponding to the selection of the optimal data center among 
the three candidates, computed as the index with the highest predicted Q-value. 

 

Repository Structure 

A typical layout (as used in the accompanying repository/bundle): 

• model/ 
o 5g_latency_opt_dqn_model.onnx — ONNX model (DQN Q-network) 
o model_config.json — model metadata, I/O specs, feature order, preprocessing parameters 

• src/ 
o state_serializer.py — builds the model input tensor from JSON scenarios and applies 

preprocessing 
o minmax_scaler.py — lightweight MinMax scaling implementation (training-fitted parameters) 
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o inference_engine.py — ONNXRuntime inference wrapper (argmax over Q-values) 
o action_interpreter.py — converts predicted action to a human-readable decision 

• demo.py — end-to-end demo (JSON → preprocess → ONNX inference → decoded action) 
• requirements.txt — minimal Python dependencies 

Training Data 

The model was trained on a tabular dataset containing per-data-center telemetry and network metrics. Each 
decision step groups 3 rows (one per candidate data center) into a single observation. 

Features Used 

The training preprocessing: 

• MinMax normalization for numeric features: 
o cpu_usage_percent 
o memory_usage_percent 
o disk_usage_percent 
o net_in_percent 
o net_out_percent 
o latency_avg 
o latency_mdev 
o lost_percent 
o carbon_intensity 

• Label encoding for: 
o client_id 

• Dropped columns: 
o start_time, end_time, net_in_absolute, net_out_absolute, 
o latency_min, latency_max 

Important: the inference pipeline must reuse the same MinMaxScaler parameters (data_min/data_max) and 
the same client_id encoding mapping fitted during training. 

Model Architecture 

The exported ONNX model contains the SB3 DQN policy Q-network (MLP-based Q-function). The network 
maps a (3×10) observation (three candidate data centers, ten features each) to Q-values for the three discrete 
actions (select DC0/DC1/DC2). 

At inference time, the recommended decision is argmax(Q-values). 

Model Specification 

Inputs 

• Name: observation 
• Type: float32 
• Shape: (batch_size, 3, 10) 
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where: 

o dimension 1 = candidate data centers (always 3) 
o dimension 2 = feature vector per data center 

Feature Order (Last Dimension) 

The last dimension (size 10) follows this exact order: 

1. client_id (label-encoded) 
2. cpu_usage_percent (MinMax-scaled) 
3. memory_usage_percent (MinMax-scaled) 
4. disk_usage_percent (MinMax-scaled) 
5. net_in_percent (MinMax-scaled) 
6. net_out_percent (MinMax-scaled) 
7. latency_avg (MinMax-scaled) 
8. latency_mdev (MinMax-scaled) 
9. lost_percent (MinMax-scaled) 
10. carbon_intensity (MinMax-scaled) 

Outputs 

• Name: q_values 
• Type: float32 
• Shape: (batch_size, 3) 
• Meaning: Q-values for the three actions: 

o action 0 → select Data Center 0 (Milan) 
o action 1 → select Data Center 1 (Rome) 
o action 2 → select Data Center 2 (Cosenza) 

Limitations 

• The model is trained for exactly 3 candidate data centers; input shape is fixed to (3,10). 
• Correct behavior depends on identical preprocessing: 

o MinMax scaling must use training-fitted min/max values 
o client_id must be encoded using the training-fitted mapping (unknown IDs should be handled 

explicitly) 
• Generalization outside the training distribution (different telemetry ranges, unseen client populations, 

different operational conditions) is not guaranteed. 
• This model provides a decision policy but does not guarantee optimality; it should be validated in the 

target deployment setting before use. 
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Usage Demo 

 

Setup Environment 

Create a Python environment and install dependencies: 

  
python -m venv .venv 
source .venv/bin/activate # (Linux/macOS)  
# .venv\Scripts\activate # (Windows)  
pip install -r requirements.txt  

At minimum, the runtime requires: 

• onnxruntime 
• numpy 
• Pandas 

Run Inference Script  

python demo.py 

The demo will: 

1. Load a JSON scenario containing dataCenterStates (3 entries) 
2. Apply preprocessing (MinMax scaling + client_id encoding) 
3. Run ONNX inference via ONNXRuntime 
4. Print the chosen data center index (argmax over Q-values) 
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3.8 Anomaly Detection Model 

3.8.1 Links 

Zenodo: https://zenodo.org/records/18302802 

GitHub: https://github.com/mlsysops-eu/model-anomaly-detection 

 

3.8.2 Citation 

Delft University of Technology. (2026). TUD Anomaly Detection Model (ONNX). Zenodo. 
https://doi.org/10.5281/zenodo.18302802 

 

3.8.3 More details 

This repository contains a trained Autoencoder-based anomaly detection model developed in the context of the 
MLSysOps project (Machine Learning for Autonomic System Operation in the Heterogeneous Edge-Cloud 
Continuum), funded by the European Union’s Horizon Europe research and innovation programme under grant 
agreement No. 101092912. 

The model is exported in ONNX format for efficient inference on edge or cloud devices. 

Purpose 

This model performs unsupervised anomaly detection on node/VM telemetry metrics by learning to 
reconstruct normal observations. 

• Input: A feature vector of telemetry metrics (float values), normalized with Min-Max scaling. 
• Output: The reconstructed feature vector. 
• Anomaly score: RMSE between input and reconstruction. 
• Decision rule: anomaly if RMSE > threshold (threshold stored in model_config.json). 

Repository Structure 

The repository provides the trained model and its configuration for easy deployment. 

. 
├── demo.py                  # Inference script (ONNXRuntime) 
├── model/ 
│   ├── autoencoder.onnx     # ONNX model 
│   └── model_config.json    # Model configuration (features, normalization, 
threshold) 
├── requirements.txt         # Python dependencies 
└── README.md                # Documentation 
  

Training Data 

The model was trained on telemetry data representing normal system behavior. The training dataset is not 
included in this Zenodo record unless explicitly provided in the uploaded files. 
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Important: The inference input must use the same feature ordering as the training data. 

Features Used (Feature Order) 

The expected feature order (last dimension of the input tensor) is: 

1. cpu_0_idle 
2. cpu_0_iowait 
3. cpu_0_irq 
4. cpu_0_nice 
5. cpu_0_softirq 
6. cpu_0_steal 
7. cpu_0_system 
8. cpu_0_user 
9. cpu_1_idle 
10. cpu_1_iowait 
11. cpu_1_irq 
12. cpu_1_nice 
13. cpu_1_softirq 
14. cpu_1_steal 
15. cpu_1_system 
16. cpu_1_user 
17. cpu_2_idle 
18. cpu_2_iowait 
19. cpu_2_irq 
20. cpu_2_nice 
21. cpu_2_softirq 
22. cpu_2_steal 
23. cpu_2_system 
24. cpu_2_user 
25. cpu_3_idle 
26. cpu_3_iowait 
27. cpu_3_irq 
28. cpu_3_nice 
29. cpu_3_softirq 
30. cpu_3_steal 
31. cpu_3_system 
32. cpu_3_user 
33. memory_used_bytes 
34. node_memory_Buffers_bytes 
35. node_memory_Cached_bytes 
36. node_memory_MemAvailable_bytes 
37. node_memory_MemFree_bytes 
38. node_memory_MemTotal_bytes 

(These names must match model/model_config.json) 
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Model Architecture 

This model is a fully-connected Autoencoder with ReLU activations: 

• Encoder dims: feature_size -> int(0.75*feature_size) -> int(0.5*feature_size) -> int(0.25*feature_size) 
-> int(0.1*feature_size) 

• Decoder dims: symmetric back to feature_size 
 
 

Model Specification 

Inputs 

• Input name: x 
• Shape: [batch_size, 38] 
• Type: float32 
• Description: Min-Max normalized feature vector 

Preprocessing 

• x_norm = (x - min) / (max - min) 
• If a feature has max == min (constant feature in training), normalization must avoid division by zero 

(recommended: set the normalized feature to 0.0). 
• Optionally clamp x_norm to [0, 1] if desired (configurable via model_config.json). 

Outputs 

• Output name: reconstruction 
• Shape: [batch_size, 38] 
• Type: float32 
• Description: Reconstructed feature vector 

 

Post-processing (Anomaly Detection) 

• rmse = sqrt(mean((x_norm - reconstruction)^2)) per sample 
• anomaly = 1 if rmse > threshold else 0 
• threshold is stored in model/model_config.json 

 

Limitations 

• Feature order & dimension are fixed: Inputs must have exactly 38 features in the specified order. 
• Normalization is training-dependent: Min/Max parameters are derived from the training data 

distribution; out-of-distribution inputs may yield unreliable anomaly scores. 
• Constant features: Features with max == min require special handling during normalization (avoid 

division by zero). 
• ONNX output is reconstruction only: The anomaly score/label is computed in the inference script. 
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Usage Demo 

1. Setup Environment 

python -m venv venv 
source venv/bin/activate 
pip install -r requirements.txt 

2. Run Inference Script 

python demo.py --model model/autoencoder.onnx --config model/model_config.json --
csv telemetry.csv --row 0 

 

CSV Format Requirements 

• CSV must include a header row. 
• Numeric columns only (or ensure the numeric columns match the 38 features exactly). 
• Column order must match the feature list and model_config.json. 

 
  



MLSysOps                       D6.4 MLSysOps Open Datasets 

        66
  

3.9 VM Utilization and Remaining Lifetime Predictor Model 

3.9.1 Link 

GitHub: https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management 

Zenodo: https://zenodo.org/records/18422649 

 

3.9.2 Citation 

Bowen, S., D. Antonopoulos, C., Smirni, E., Ren, B., Bellas, N., & Lalis, S. (2026). # PeakLife (ONNX) — VM 
Utilization + Remaining Lifetime Predictor (Version 1.0.0) [Computer software]. https://github.com/mlsysops-
eu/model-peaklife-predictive-vm-management 

 

3.9.3 More details 

This repository contains PeakLife, a lightweight neural model exported to ONNX for portable inference. 
Given the historic utilization information for a VM, PeakLife predicts: 

• Future CPU utilization: AvgCPU and MaxCPU (normalized) 
• Remaining lifetime: normalized remaining lifetime (and seconds via scaling) 

 
The repo includes a minimal demo pipeline that loads a small CSV (demodata.csv), preprocesses it to the 
model’s expected inputs, runs ONNX inference, and prints the results. 

Project Structure 

. 
├── model/ 
│   ├── peaklife.onnx            # ONNX model 
│   └── model_config.json        # Model card & Configuration 
├── src/ (Optional)              # Helpers for data preparation 
│   ├── DataUtil.py         
│   └── prepare_demodata.py      
├── demo.py                      # Main entry point for inference demo 
├── demodata.csv                 # Demo dataset 
├── requirements.txt             # Python dependencies for inference 
└── README.md 

Limitations & Model Constraints 

This ONNX model is tied to a specific input contract and normalization: 

Pre-set history length: input_length = 288 time steps by default. 

• Forecast horizon: forecast_length = H. 
• Signals: CPU utilization-only (AvgCPU, MaxCPU). Other resources (RAM/disk/net) are not modeled 

in this version. 
• Normalization: 

o CPU values are expected in 0–100 in CSV and normalized by cpu_divisor (usually 100.0). 
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o Remaining lifetime is normalized by max_lifetime_seconds from model_config.json. 
• Output ranges: the model outputs are bounded to [0, 1] (Sigmoid heads), so it will not produce values 

outside this range. 
• Data schema requirement for demo: demodata.csv must contain at least: 

o VMID 
o AvgCPU, MaxCPU 
o time_relative_seconds, lifetime_seconds 
o optionally TimeStamp and MaxCPU_so_far (if missing, demo falls back to last MaxCPU) 

Installation 

It is recommended to use a virtual environment to keep dependencies isolated. 

1. Clone the Repository 

git clone https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management 
cd model-peaklife-predictive-vm-management 

2. Create and Activate Virtual Environment 

Linux / macOS: 

python3 -m venv venv 
source venv/bin/activate 

Windows (PowerShell): 

python -m venv venv 
.\venv\Scripts\Activate.ps1 

3. Install Dependencies 

pip install -r requirements.txt  

Quick Start 

Run the demo script. 

python demo.py 

Output Example: 

--- Model Loaded --- 
--- Demo Dataset Ready --- 
--- PeakLife Demo --- 
VMID: QdbZeJFmsJ3euIQ4lwW63NwFEP+QIirT4QbI0jEGr4dpkOet8p3iQSHAEm1gKWnR 
inputs shape: (1, 288, 2) | aux shape: (1, 2) 
pred_util shape: (1, 1, 2) | pred_life shape: (1, 1) 
 
--- Utilization Prediction (AvgCPU, MaxCPU) --- 
Pred (normalized): 3.912 , 5.861 | 0.039123 , 0.058608 
True (normalized): 4.356 , 6.186 | 0.043559 , 0.061863 
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--- MAPE (avg, max, and combined) --- 
util_mape(avg)=0.101832 | util_mape(max)=0.052609 | util_mape(combined)=0.077221 
 
--- Remaining Lifetime Prediction --- 
Pred remaining_lifetime_norm=0.893175 | Pred 
remaining_lifetime_seconds=1544747.0s 
True remaining_lifetime_norm=0.950043 | True 
remaining_lifetime_seconds=1643100.0s 
 
--- Lifetime MAPE --- 
life_mape=0.059858 

Configuration & Model Card 

The file model/model_config.json serves as the Model Card and includes: 

+ input_length 
 
+ forecast_length 
 
+ normalization.cpu_divisor 
 
+ normalization.max_lifetime_seconds 
 
+ input/output names and shapes (if you record them) 

Important: The ONNX weights are tied to these dimensions and normalization constants. 
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3.10 ML Model for Predicting Job Placement Failures in Datacenter Clusters 

3.10.1 Links 

https://zenodo.org/records/18486169 

https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management 

 

3.10.2 Citation 

Patras, A., Syrivelis, D., & Terzenidis, N. (2026). MLNX ML Model for Predicting Job Placement Failures in 
Datacenter Clusters (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18486169 

 

3.10.3 More details 

This repository contains a trained binary classification model, exported to ONNX, that predicts whether a 
submitted job will fail or run successfully, given: 

• the current state of a simulated datacenter cluster, and 
• the resource request of an incoming job. 

The model was developed within the MLSysOps research project and is intended for offline analysis, 
benchmarking, and integration into scheduling or admission-control pipelines. 

Problem Statement 

Modern large-scale clusters must decide whether to admit a job under uncertainty. Poor placement decisions can 
lead to job failures, even when aggregate resources appear sufficient. 

In this work, a job failure can occur due to two distinct causes: 

1. Insufficient compute resources (servers) 
If the cluster does not have enough free servers to satisfy the job request, failure can be determined 
through a simple availability check. 

2. Insufficient or infeasible network connectivity (uplinks) 
Even when the total number of uplinks appears sufficient, the job may still fail because the required 
connectivity cannot be realized. 

The latter case arises from the presence of a reconfigurable optical circuit switch (OCS) interconnecting leaf 
switches. Although OCS-based fabrics provide high bandwidth and flexibility, they introduce topological and 
temporal constraints: not all feasible matchings between leaf switches can be realized simultaneously, and 
reconfiguration constraints may prevent forming the necessary end-to-end paths. 

As a result, uplink feasibility is not a simple counting problem, but a combinatorial one that depends on: 

• the current circuit configuration, 
• contention with existing jobs, 
• and connectivity constraints imposed by the optical fabric. 
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Goal: 
The model learns to predict whether a job will fail due to either compute insufficiency or network infeasibility, 
based on a snapshot of the cluster state and the job request. 

Dataset 

The model was trained and evaluated using a large-scale simulated dataset of job placement attempts. 

Dataset repository (Zenodo): https://zenodo.org/records/18485585 

The dataset repository provides: 

• detailed system context, 
• feature descriptions, 
• ground-truth label semantics, 
• statistical summaries, 
• and usage examples. 

Note: The dataset is released separately and is required to reproduce training or evaluation results. 

Model Summary 

• Task: Binary classification (job failure prediction) 
• Framework: PyTorch 
• Training orchestration: Ray Train / Ray Tune 
• Export format: ONNX 
• Inference backend: ONNX Runtime 

The model consumes tabular features plus fixed-length vectors describing cluster utilization. Although the 
dataset distinguishes between different failure causes, the released model produces a binary output: 

• not failed 
• failed 

Inputs and Preprocessing 

• The model expects: 
o scalar numeric features describing cluster utilization and fragmentation, 
o fixed-length vector features representing server and uplink utilization. 

• All preprocessing steps are defined in bundle.json, including: 
o feature column order, 
o normalization parameters (StandardScaler), 
o vector dimensions. 

bundle.json must always be treated as the authoritative source of truth for model inputs. 
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Quick Start 

Prerequisites 

Install the required Python dependencies: 

pip install numpy pandas pyarrow onnxruntime 

or 

pip install -r requirements.txt 

Basic Usage 

The src/inference_runtime.py script loads the ONNX model and preprocessing bundle, reads rows from 
a parquet file, and outputs predictions. 

Run inference on the first 1000 rows 

python src/inference_runtime.py \  
  --onnx model/model.onnx \ 
  --bundle model/bundle.json \ 
  --parquet model/data.parquet \ 
  --n 1000 

Output format (per row): 

0    not failed    proba=0.023456 
1    failed        proba=0.987654 
2    not failed    proba=0.012345 

  

Evaluate metrics (if ground-truth labels are available) 

If your parquet file includes the ground-truth label column, you can compute evaluation metrics: 

python src/inference_runtime.py \ 
  --onnx model/model.onnx \ 
  --bundle model/bundle.json \ 
  --parquet model/data.parquet \ 
  --n 1000 \ 
  --label_col l1_failed 

Additional output: 

Metrics on loaded rows: 

accuracy=0.925980 
precision=0.933392 
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recall=0.910949 
f1=0.922034 

Command-Line Arguments 

The inference script (inference_runtime.py) supports the following command-line arguments: 

Argument Required Default Description 

--onnx Yes — Path to the model.onnx file 

--bundle Yes — Path to bundle.json containing preprocessing metadata 

--parquet Yes — Path to the input Parquet file 

--n No 1000 Number of rows to load from the Parquet file 

--label_col No None Name of the ground-truth label column (used only for metrics) 

 

If --label_col is not provided, the script performs inference only and does not compute evaluation metrics. 

Note: The exact feature column order and normalization parameters are stored in bundle.json. 

Model Constraints 

The released model is subject to several explicit constraints that must be respected for correct and meaningful 
use. 

Fixed Input Schema 

• The model expects a fixed set of input features: 
o scalar numeric features, 
o a server utilization bitmap of fixed length, 
o a leaf-switch utilization vector of fixed length. 

• The exact feature order, normalization parameters, and vector lengths are defined in bundle.json. 

Fixed Cluster Topology Assumption 

• The model is trained assuming a specific cluster architecture: 
o 32 Scalable Units (SUs), 
o 32 servers per SU (1024 total servers), 
o 8 leaf switches per SU (256 total leaf uplinks). 

• The server and uplink vectors are not dynamically resizable. 
• Applying the model to clusters with: 

o different numbers of servers, 
o different SU layouts, 
o or different network topologies 

requires retraining or careful feature remapping and validation. 
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Binary Output Only 

• Although the dataset distinguishes between: 
o server-related failures, and 
o uplink-related failures, the released model produces a binary output only: 

§ failed 
§ not failed 

• The model does not indicate why a failure is predicted. 

Probabilistic Predictions 

• The model outputs a probability of failure, not a deterministic decision. 
• The default classification threshold is 0.5, but: 

o different operational settings may require different thresholds, 
o threshold tuning should consider false-positive vs false-negative trade-offs. 

• Predictions should be interpreted as risk estimates, not guarantees. 
• It is intended to be used as a decision-support component, not as a standalone scheduler. 

Users integrating this model into larger systems should ensure that all constraints above are satisfied and 
validated before relying on predictions in operational workflows. 

 

 

 

  



MLSysOps                       D6.4 MLSysOps Open Datasets 

        74
  

3.11 Reinforcement Learning Policy Model for Dynamic FPGA DPU Configuration Selection 

3.11.1 Links 

GitHub:  https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management 

Zenodo: https://zenodo.org/records/18494559 

 

3.11.2 Citation 

Patras, A., Lalis, S., Antonopoulos, C., & Bellas, N. (2026). UTH Reinforcement Learning Policy Model for 
Dynamic FPGA DPU Configuration Selection (0.1.0). Design, Automation, and Test in Europe (DATE). 
Zenodo. https://doi.org/10.5281/zenodo.18494559 

 

3.11.3 More details 

This repository provides a trained reinforcement-learning policy model, exported to ONNX, that selects an 
FPGA DPU configuration—defined by DPU size and number of DPU compute units (instances)—given an 
observation vector describing the current system and job context. 

The model is intended for offline analysis, benchmarking, and decision support in FPGA-based ML inference 
pipelines, where selecting an appropriate DPU configuration is critical for performance and efficiency. 

Problem Statement 

Modern FPGA platforms support multiple DPU bitstream configurations, trading off parallelism, resource 
usage, and performance. Selecting an optimal configuration at runtime is non-trivial due to: 

• varying model characteristics, 
• changing workload intensity, 
• contention between FPGA and ARM CPU resources, 
• and complex performance–power trade-offs. 

This repository addresses the problem of DPU configuration selection as a discrete decision-making task, 
learned via reinforcement learning from prior experimentation. 

Goal: Given an observation vector describing the system/job state, predict the most suitable DPU configuration 
from a fixed action space. 

Dataset 

The policy model was trained using telemetry and experiment data collected from repeated ML inference runs 
on a Xilinx ZCU102 FPGA platform. 

Dataset repository (Zenodo): https://zenodo.org/records/18494461 

The dataset provides: 

• experiment configurations, 
• time-series telemetry, 
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• performance, power, and system metrics, 
• and serves as the basis for training and evaluating this policy. 

Model Summary 

• Task: Discrete action selection (RL policy inference) 
• Framework: Reinforcement Learning (trained offline) 
• Export format: ONNX 
• Inference backend: ONNX Runtime 
• Output: Action index corresponding to a DPU configuration 

The model outputs logits over a discrete action space. At inference time, the selected action is obtained via 
argmax. 

Action Space (DPU Configurations) 

Each model output corresponds to one action in a fixed action space. An action maps to: 

• DPU Size (bitstream size), and 
• CU count (number of DPU compute units / instances). 

The canonical mapping is defined in: 

action_interpreter.py → DEFAULT_ACTION_CONFIGS 

 

This mapping is part of the model contract and must remain consistent with training and export. 

Model Input/Output 

Note: Training used normalized observations 

All numeric features must be normalized to [0, 1] using fixed caps/bounds (see below). 
If you pass raw telemetry units directly (e.g., MB/s, W, CPU%), the model output will not be meaningful. 

Observation layout (22 features total) 

The model input is a single flat vector with this exact order: 

System telemetry (16) 

cpu_0, cpu_1, cpu_2, cpu_3 
S0_read, S1_read, S2_read, S3_read, S4_read 
S0_write, S1_write, S2_write, S3_write, S4_write 
fpga_power, arm_power 

Job static characteristics (5) 

gmac, ldfm, ldwb, stfm, parameters 



MLSysOps                       D6.4 MLSysOps Open Datasets 

        76
  

Constraints (1) 

target_fps 

Normalization caps / bounds (training contract) 

System caps: 

max_bw_mb_s = 7000 
max_power_w = 20.0 

Job static bounds: 

canonical_depth: (18.0, 152.0) (not used in this release’s observation vector) 
gmac: (0.3, 12.303) 
ldfm: (0.792, 91.787) 
ldwb: (3.326, 65.66) 
stfm: (0.192, 61.125) 
parameters: (3.5, 60.2) 

Dynamic bounds (used for internal training instrumentation; not part of the released observation vector): 

total_fps: (10.0, 100.0) 
ppw: (1.0, 100.0) 

Normalization formula: 

x_norm = clip((x - low) / (high - low), 0, 1) 

 

Outputs 

Logits tensor of shape: 
(1, num_actions) or (batch_size, num_actions) 

The inference examples select: 

action_idx = argmax(logits) 

Usage 

1. Prerequisites - install required dependencies: 

onnxruntime 
numpy 
pandas 

2. Action Interpretation 

action_interpreter.py provides the ActionInterpreter utility, which: 

• maps action_idx → (dpu_size, cu_count), 
• produces human-readable descriptions, 
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• enables consistent decoding of model outputs, 
• supports action-space inspection and statistics. 

 
Note: Changing the action ordering will silently invalidate predictions. 

3. Programmatic Inference (Recommended) 

Use inference_wrapper.py to integrate the model into other scripts or services. 

• Load the ONNX model 
• Pass one or more normalized observation vectors 
• Receive decoded DPU configuration and confidence 

 

The following example shows how to load the model and run inference on a single observation vector. 

import numpy as np 
 
from src.inference_wrapper import FPGARLInference, normalize_observation_row 
 
# 1) Load the ONNX policy 
model = FPGARLInference("fpga_rl_policy.onnx", verbose=True) 
 
# 2) Option A (recommended): provide RAW features in dataset column names, 
# then normalize using the same caps/bounds as training. 
raw_features = { 
    "cpu_0": 12.5, 
    "cpu_1": 10.2, 
    "cpu_2": 8.8, 
    "cpu_3": 9.7, 
    "S0_read": 1200.0, 
    "S1_read": 1180.0, 
    "S2_read": 150.0, 
    "S3_read": 120.0, 
    "S4_read": 90.0, 
    "S0_write": 220.0, 
    "S1_write": 210.0, 
    "S2_write": 35.0, 
    "S3_write": 28.0, 
    "S4_write": 20.0, 
    "fpga_power": 3.10, 
    "arm_power": 1.85, 
    "gmac": 1.82, 
    "ldfm": 25.40, 
    "ldwb": 14.20, 
    "stfm": 9.10, 
    "parameters": 11.70, 
    "target_fps": 30.0, 
} 
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# Normalize to the 22-feature vector expected by the model 
obs_norm = normalize_observation_row(raw_features)          # shape: (22,) 
result = model.predict(obs_norm)                            # runs ONNX 
inference 
 
print(model.format_result(result)) 
print("Action index:", result["action_idx"]) 
 
# 3) Option B: pass an already-normalized observation vector (float32, 22 dims). 
# (Only do this if you *know* your normalization matches training.) 
obs_norm_direct = obs_norm.astype(np.float32) 
result2 = model.predict(obs_norm_direct, return_logits=True) 
print("Top logit:", float(result2["logits"][result2["action_idx"]])) 
 
# 4) Batch inference example (N x 22) 
batch_raw = [raw_features, {**raw_features, "cpu_0": 35.0, "target_fps": 60.0}] 
batch_obs = np.stack([normalize_observation_row(r) for r in batch_raw], axis=0)  
# (N, 22) 
 
batch_results = model.predict_batch(batch_obs) 
for i, r in enumerate(batch_results): 
    print(f"Sample {i}: {r['action_str']} (confidence={r['confidence']:.2%})") 

CSV-Based Inference Demo 

The onnx_inference_example.py provides an end-to-end example that: 

• loads the ONNX model, 
• reads observations from a CSV file, 
• runs inference row-by-row, 
• prints selected actions and summary statistics. 

 
This is useful for offline replay, inspection, and experimentation. 

 python3 src/onnx_inference_example.py \ 
  --onnx model/fpga_rl_policy.onnx \ 
  --csv sample_data.csv \ 
  --out inference_results.csv 

Model Constraints 

• The action space is fixed and cannot be extended without retraining. 

• The model produces one discrete decision only (no multi-objective output). 
• Predictions assume consistent feature preprocessing and observation semantics. 
• Inference is stateless; temporal dependencies are not modeled. 
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4 Conclusions 

Deliverable D6.4 documents the successful finalization and public release of the MLSysOps Open Datasets 
and Models, representing the project's commitment to open science. By curating and publishing eight public 
datasets and eleven machine learning models, the consortium has provided a robust foundation for future 
research in autonomic system management within the cloud-edge continuum. 

The utilization of Zenodo as a central repository has ensured that all project outputs adhere to the FAIR 
principles—making them Findable, Accessible, Interoperable, and Reusable for the broader scientific 
community. 

By providing these models primarily in the ONNX format, the project ensures cross-platform compatibility, 
allowing researchers to deploy and test these solutions across varying hardware environments. Ultimately, the 
MLSysOps Zenodo Community serves as a permanent, citable archive that will continue to support the 
evolution of AI-controlled frameworks long after the project's formal conclusion. 

 

END OF DOCUMENT 

 


