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Summary

Deliverable D6.4 reports the final status of the datasets and machine learning (ML) models made publicly
available within the MLSysOps project, in accordance with FAIR principles and the project’s open science
strategy. To ensure long-term accessibility and scientific transparency, Zenodo was selected as the primary
platform to host the MLSysOps Community, serving as a persistent repository for sharing datasets, ML models,
and technical reports.

This deliverable provides a comprehensive index and technical description of nineteen distinct assets:

e FEleven Machine Learning Models: These models, produced through collaborative efforts between
partners, are primarily provided in the ONNX (Open Neural Network Exchange) format to ensure cross-
platform interoperability and ease of deployment.

e Eight Public Datasets: These resources include raw and processed data collected from diverse sources,
including real-world IoT testbeds, 5G signal monitoring, and high-fidelity system simulators.

By centralizing these resources, Deliverable D6.4 establishes a foundation for future research in autonomic
system management across the cloud-edge continuum. The availability of these assets directly supports the
project's goal of fostering an open research ecosystem for Al-driven infrastructure management.
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FAIR

Findable, Accessible, Interoperable, and Reusable

FPGA Field-Programmable Gate Array
LST™M Long Short-Term Memory

ML Machine Learning

ONNX Open Neural Network Exchange
RL Reinforcement Learning
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1 Introduction

Deliverable D6.4 provides a centralized index and technical overview of the datasets and machine learning (ML)
models produced throughout the MLSysOps project. As the project focuses on designing an Al-controlled
framework for autonomic system management across the cloud-edge continuum, these open-source resources
are part of the practical foundation of its research and development efforts. By documenting nineteen distinct
assets—comprising eight datasets and eleven machine learning models—this document serves as a
comprehensive guide for anyone interested in replicating project results or building upon them. To ensure
maximum impact and scientific integrity, all assets have been curated in accordance with open science standards
and hosted in a persistent public repository (Zenodo).

1.1  FAIR Principles

The FAIR principles represent a set of guidelines designed to optimize the reuse of scientific data by both
humans and machines. FAIR is an acronym and every letter has an important meaning. In detail:

¢ Findable: Data and metadata should be easy to find for both humans and computers. This involves using
unique and persistent identifiers (like DOIs) and indexing data in searchable resources.

e Accessible: Once found, users need to know how the data can be accessed, possibly including
authentication and authorization. Data should be retrievable using standard communication protocols.

e Interoperable: Data needs to be integrated with other data. It should use a formal, accessible, shared,
and broadly applicable language for knowledge representation.

e Reusable: The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and data
should be well-described so that they can be replicated and/or combined in different settings.

The project selected Zenodo as its primary platform because it directly supports these FAIR objectives through
several key features:

e Persistent Identifiers: Zenodo automatically assigns a Digital Object Identifier (DOI) to every upload.
This makes the datasets and models permanently citable and "Findable".

e Community Curation: It allows for the creation of a dedicated MLSysOps Zenodo Community. This
centralizes all project results -- including the eight datasets, eleven models as well as reports -- making
them easier for researchers to browse in one location.

e Long-Term Preservation: As a non-commercial repository hosted by CERN, Zenodo provides a stable,
long-term home for data, ensuring "Accessibility" even after the project concludes.

e Metadata Support: The platform requires structured metadata for every upload, which improves
"Interoperability" and "Reusability" by providing context such as authors, descriptions, and usage
instructions.

e Open Access Integration: Zenodo is built to support Open Access mandates, making it easy to comply
with grant requirements while sharing work with the public

1.2  Datasets

The project has released eight public datasets hosted on Zenodo to support research in autonomic system
operations. In detail:
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1. Ubiwhere Smart Lamppost Dataset: Environmental and traffic data (GPU/CPU usage, noise,
temperature, and person/car/motorcycle detections) from a smart lamppost in Aveiro, Portugal.

2. 5G Jamming Attack Detection Dataset: Physical layer (PHY) cellular network traces, including signal
strength (RSRP, RSRQ, SINR), thermal sensors, and RF transmission power from an Android device
under 5G jamming scenarios.

3. INRIA I/Q Signal Dataset: Raw radio signal traces (In-Phase/Quadrature) for RF fingerprinting and
physical layer authentication, focusing on unique hardware impairments.

4. Tractor-Drone Co-Robotics Dataset: Telemetry and computer vision metrics from a smart agriculture
system where an autonomous drone assists a tractor when its cameras are blinded by sun glare.

5. TUD Telemetry Dataset: Host telemetry snapshots including per-core CPU utilization (idle, iowait, irq,
etc.) and various memory metrics (used, free, available) for anomaly detection.

6. Object Storage Transfer Speeds Dataset: Data documenting upload and download performance across
various cloud providers and regions for analyzing network throughput.

7. Job Placement Failures Dataset: Over one million rows of data from a simulated datacenter documenting
job placement attempts under varying network and fragmentation conditions.

8. FPGA ML Inference Telemetry Dataset: Performance metrics from FPGA-based ML inference,
including latency breakdowns, per-thread throughput, and memory bandwidth usage.

1.3 Models
The consortium has produced eleven machine learning models , primarily in ONNX format for cross-platform
compatibility:

1. Cluster VM Management Model: A reinforcement learning agent that recommends creating, destroying,
or doing nothing with VMs based on infrastructure state.

2. 5G Jamming Attack Detection Model: An LSTM-based neural network that processes 5G signal features
to identify anomalies or intentional jamming.

3. RF Fingerprinting Models: Models designed for physical layer authentication by identifying specific
authorized devices from their radio signal transients.

4. SkyFlok Latency Prediction Models: Regression models (one for each of six backends) that predict file
transfer times for specific cloud storage routes.

5. Smart Lamppost Noise Prediction Model: A multivariate LSTM that estimates future environmental
noise levels (dB) based on real-time traffic and pedestrian counts.

6. Drone Deployment Prediction Model: An XGBoost classifier that predicts the "should fly" signal to
trigger proactive drone deployment in agriculture.

7. 5G Latency Optimization Prediction Model: A model designed to optimize and predict latency
behaviors within 5G network configurations.

8. Anomaly Detection Model: A reconstruction-based model (e.g., autoencoder) trained on host telemetry
to identify system performance deviations.

9. PeakLife VM Predictor: A model that simultaneously predicts future CPU utilization and the remaining
lifetime of a virtual machine for proactive resource management.

10. Job Placement Failure Predictor: A model trained on simulated datacenter data to predict the outcome
of job placement attempts under varying load.

11. FPGA-Based RL Policy: A Reinforcement Learning policy specialized for selecting discrete actions in

FPGA configurations based on system telemetry
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1.4 The MLSysOps Zenodo Community

The MLSysOps community created at Zenodo can be found in the following link:
https://zenodo.org/communities/mlsysops/about

MLSysOps: Machine Learning for Autonomic System Operation in the Heterogeneous Edge-
Cloud Continuum N o

& hitps://misysops.eu/ @ Project [ University of Thessaly Ror and 11 more organizations

MLSysOps

Q Records & Requests 28: Members &3 Settings i About

MLSysOps: Machine Learning for Autonomic System Operation
in the Heterogeneous Edge-Cloud Continuum

The main objective of MLSysOps is to design, implement and evaluate a complete Al-controlled
framework for autonomic end-to-end system management across the full cloud-edge continuum.
MLSysOps will employ a hierarchical agent-based Al architecture to interface with the underlying
resource management and application deployment/orchestration mechanisms of the continuum.
Energy efficiency and utilization of green energy, performance, low latency, efficient, and trusted
tier-less storage, cross-layer orchestration including resource-constrained devices, resilience to
imperfections of physical networks, trust, and security, are key elements of MLSysOps addressed
using ML models.
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2 MLSysOps Public Datasets

On this section we introduce in detail every dataset that is made public in the context of MLSysOps. For every
entry we provide the Zenodo link, the citation that was produced by Zenodo when the dataset was uploaded as
well as copied information from the Zenodo entry.

2.1 Ubiwhere Smart Lamppost Dataset
2.1.1 Link
https://zenodo.org/records/18245141

2.1.2 Citation

Ubiwhere (Portugal). (2026). Ubiwhere Smart Lamppost Dataset (v1.0.0) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.18245141

2.1.3  More details
About the Dataset

This dataset was collected by Ubiwhere from a smart lamp post installed in the company headquarters, in city
of Aveiro, Portugal. The smart lamp post is equipped with video and sound sensors (camera and microphone)
and captures environmental and traffic-related data.

Time period: Data covers from 2025-08-22 13:10:00 to 2025-08-29 12:00:00.
About the Smart Lamppost.

This dataset was generated from a Smart Lamppost [oT installation by Ubiwhere in company headquarters, in
the city of Aveiro, Portugal. The Smart Lamppost is a modular urban infrastructure solution that supports:
intelligent LED lighting with remote management and analytics, optional electric vehicle (EV) charging
capability, edge computing and telemetry, neutral hosting for 4G/5G telecom services, environmental sensing
(video, sound, noise level, temperature).

For more details, see the product page: https://www.ubiwhere.com/en/products/smart-cities/smart-lamppost/

Dataset Features
e timestamp: Date and time of the observation (ISO 8601 format)
e GPU Usage: Percentage of GPU utilization of the device
e CPU Usage: Percentage of CPU utilization of the device
e Memory Used: Amount of RAM used by the device (in bytes)
e Jetson Energy: Energy consumption of the Jetson device (in joules or watt-seconds)
e Switch Energy: Energy consumption of the network switch (in joules or watt-seconds)
o Inference Time: Time taken for Al inference processing (in seconds)
e Tracking Time: Time taken for object tracking processing (in seconds)
e Noise Level: Measured environmental noise level (in decibels, dB)

e Temperature: Ambient temperature recorded by the sensor (in degrees Celsius)

10
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Instantaneous Person Detections: Number of persons detected in the current instant/frame

Instantaneous Car Detections: Number of cars detected in the current instant/frame

Instantaneous Motorcycle Detections: Number of motorcycles detected in the current instant/frame

Intended Use

Column Summary and Data Types

Environmental monitoring

Traffic analysis

Energy consumption profiling

Al and ML model training for object detection and inference optimization

Smart city infrastructure research

Descriptor Count
GPU Usage (i64) 597,002
CPU Usage (f64) 597,002

Memory Used (i64) 597,002
Jetson Energy (f64) 597,002
Switch Energy (f64) 597,002
Inference Time (f64) 597,002
Tracking Time (f64) 597,002

Noise Level (f64) 597,002
Temperature (f64) 596,972
Inst. Person Detections

597,002
(i64) ’
I.nst. Car Detections 597,002
(i64)
Inst. Motorcycle 597,002

Detections (i64)

Mean

96.2
11.2
7.21€9
16.1
13.0
0.2

0.0
12.2
33.8

0.0

0.0

0.0

Std

15.0
0.7
1.07e8
1.3
2.0
0.0
0.0
7.2

9.7

1.6

1.3

0.0

Min
0.0
9.6

5.75¢9

10.4
9.5
0.1
0.0
-3.5
22.1

0.0

0.0

0.0

25%

100.0

10.8

7.11e9

15.0
11.3
0.2
0.0
8.7
24.7

0.0

0.0

0.0

50%
(Median)
100.0
11.1
7.21e9
15.9
11.4
0.2

0.0
10.4
27.3

0.0
0.0

0.0

75%

100.0
11.4
7.30e9
17.0
15.4
0.2

0.0
12.9
44.7

0.0

0.0

0.0

Max

100.0
36.5
7.51e9
22.1
16.3
0.3

0.0
55.4
46.6

7717.0

580.0

7.0

11
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2.2 5G Jamming Attack Detection Dataset
2.2.1 Link
https://zenodo.org/records/18253312

2.2.2 Citation

Xu, J., Moheddine, A., Loscri, V., Brighente, A., & Conti, M. (2026). INRIA SHIELD Framework Dataset - 5G
Jamming Attack Detection (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18253312

2.2.3  More details
Overview

This dataset contains physical layer (PHY) cellular network traces collected from an Android smartphone (OnePlus
Nord 2T 5G) under 5G jamming attack scenarios.

It serves as the official training and validation data for the SHIELD Framework.

e Paper: SHIELD: Scalable and Holistic Evaluation Framework for ML-Based 5G Jamming Detection
e Source Code: The full Android application and model training code are available on GitHub:
https://github.com/mlsysops-eu/model-5g-jamming-detection

Authors

o Jiali Xu (Inria Centre at the University of Lille)

e Aya Moheddine (Inria Centre at the University of Lille)

e Valéria Loscri (Inria Centre at the University of Lille)

e Alessandro Brighente (Department of Methematics, University of Padova)
e  Mauro Conti (Department of Methematics, University of Padova)

File Description
1. Raw Data (data/raw/)

e replay.log: The unprocessed Android radio log captured via adb logcat -b radio. It contains mixed streams
of signal reports, thermal sensors, and modem debug messages.

2. Processed Data (data/processed/)

o fused_input.csv: (Recommended for Use) The synchronized, feature-engineered dataset ready for Machine
Learning.
o Frequency: 1Hz (Resampled)
o Dimensions: 60 Columns (+1 timestamp)
o Format: Time-series matrix suited for LSTM/RNN models.

3. Configuration (config/)

e 1plus-nord2t.yaml: Defines the Regular Expressions (Regex) used to parse the raw log file. It maps specific
log tags (e.g., AT<+ECSQ) to data features.

4. Tooling (scripts/)

e parse_data.py: A Python script that reads 1plus-nord2t.yaml to extract raw metrics from the log into
intermediate CSVs.

o fuse data.py: A Python script that performs time-synchronization (linear interpolation) and feature
extraction (rolling window statistics).

12
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Dataset Schema (fused_input.csv)

The fused dataset contains 60 feature columns. These are derived from 12 Raw Metrics processed through 5
Statistical Aggregations over a 10-second sliding window.

The 12 Raw Metrics

1. Signal Strength (3): ssRsrp, ssRsrq, ssSinr (Standard 5G metrics).

2. Extended Quality (6): ecsq_idx0, ecsq_idx1, ecsq_idx2, ecsq_idx5, ecsq_idx6, ecsq_idx8 (Specific modem
quality indices from AT+ECSQ).

3. Thermal (2): thermal idx3, thermal idx5 (Device internal temperature sensors).

4. RF Transmission (1): erftx idx9 (Uplink transmission power state).

The 5 Aggregations (Suffixes)

For each raw metric above, the following statistics are calculated:

e mean: Average value over the window.
e  max: Maximum value.
e  min: Minimum value.
_std: Standard deviation (Stability indicator).
e amplitude: Difference between Max and Min (max - min).
Total Dimensions: 12 metrics x 5 aggregations = 60 Columns.

Example Column Names:

e ssRsrp mean (Average Signal Power)
o ssSinr_std (Signal to Noise Stability)
e thermal idx3 amplitude (Temperature fluctuation)

Usage Instructions

Option A: Quick Start (ML Training)

Load the pre-processed file directly into your model.

import pandas as pd

df = pd.read_csv("data/processed/fused_input.csv", index_ col="timestep")
print(df.shape)

# Output: (Rows, 60)

Option B: Reproduce the Pipeline

If you wish to change the preprocessing parameters (e.g., change window size from 10s to 5s), follow these steps:
1. Create a python environment:

python -m venv venv
source venv/bin/activate

2. Install Requirements:

13
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pip install pandas pyyaml

3. Run the Parser: Extracts the raw numbers from data/raw/replay.log using the rules in config/1plus-nord2t.yaml.

python scripts/parse_data.py

Output: Creates a parsed_data/ folder with individual CSVs.
4. Run the Fuser: Synchronizes the data to 1Hz and calculates rolling statistics.
python scripts/fuse_data.py

Output: Generates a new fused data.csv.

14



MLSysOps D6.4 MLSysOps Open Datasets

2.3 I/Q Signal Dataset for RF Fingerprinting and Physical Layer Authentication
2.3.1 Link
https://zenodo.org/records/18268648

2.3.2 Citation

Alla, I, Yahia, S., Loscri, V., & eldeeb, . hossien . (2026). INRIA I/Q Signal Dataset for RF Fingerprinting and
Physical Layer Authentication (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18268648

2.3.3 More details

Overview

This dataset contains Raw 1/Q (In-Phase/Quadrature) radio signal traces collected using a BladeRF AX4
Software Defined Radio (SDR) and GNU Radio.

It serves as the official training and validation data for the PLA-AP project (Physical Layer Authentication),
designed to evaluate machine learning approaches for identifying wireless devices based on their hardware
impairments (RF fingerprints).

e Paper: Robust Device Authentication in Multi-Node Networks: ML-Assisted Hybrid PLA Exploiting
Hardware Impairments

e Source Code: The preprocessing and model training code is available on GitHub:
https://github.com/mlsysops-eu/model-physical-layer-authentication

Authors

o Ildi Alla (Inria Centre at the University of Lille)

e Selma Yahia (Inria Centre at the University of Lille)

e Valéria Loscri (Inria Centre at the University of Lille)
¢ Hossien Eldeeb (University of Cambridge)

File Description
Raw Data (raw/)

This directory contains the binary signal files captured directly from the SDR.

e Format: Binary I/Q data (Interleaved 32-bit floats).

e Content: Each file captures the "burst" transmission of a specific device, including the transient (turn-
on) and steady-state phases.

e Organization: The files are organized by Device ID (e.g., devicel, device2).

Dataset Technical Specifications

The data was collected under controlled experimental conditions to ensure reproducibility.

Hardware Setup
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Receiver: BladeRF AX4 (SDR) connected to a host PC running GNU Radio.

Transmitters: Various commercial-off-the-shelf (COTS) wireless devices (e.g., NRF52840 dongles or similar
IoT nodes).

Signal Characteristics

e Sampling Rate: 20 Msps (Mega Samples Per Second).

e Center Frequency: 2.4 GHz (ISM Band).

e Data Format: Complex64 (Interleaved 32-bit floats: I, Q, I, Q...).

o Key Feature: The dataset specifically targets the transient phase (the initial signal ramp-up), which
contains the most distinct hardware fingerprints.

Usage Instructions
Loading Raw 1/Q Data

Since this dataset contains raw binary files without headers, you can load them using Python and NumPy.

import numpy as np
import matplotlib.pyplot as plt

# 1. Define File Path
filename = "data/raw/devicel triall.bin" # Replace with actual filename

# 2. Load Binary Data (Complex64)

# BladeRF/GNU Radio saves data as interleaved float32 (I, Q, I, Q...)
# This is equivalent to numpy's complex64 type

data = np.fromfile(filename, dtype=np.complex64)

# 3. Basic Visualization

plt.figure(figsize=(10, 4))
plt.plot(np.real(data[0:1000]), label="In-Phase (I)")
plt.plot(np.imag(data[0:1000]), label="Quadrature (Q)")
plt.title("Raw I/Q Signal Snippet")

plt.legend()

plt.show()

Processing the Data

To transform this raw data into features suitable for machine learning (e.g., Transient Detection, Filtering, Gabor
Transform) and save them in a structured HDF5 format, please refer to the the source code implemented in the
official GitHub repository:

e Preprocessing Logic: https://github.com/mlsysops-eu/model-physical-layer-
authentication/blob/main/src/preprocessing.py

e Data Loader & HDF5 Saving: https://github.com/mlsysops-eu/model-physical-layer-
authentication/blob/main/src/dataloader.py
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2.4  Tractor-Drone Co-Robotics Dataset for Weed Detection
2.4.1 Link
https://zenodo.org/records/18293250

2.4.2 Citation

Augmenta (acquired by CNH Industrial). (2026). Augmenta Tractor-Drone Co-Robotics Dataset for Weed
Detection (v1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18293250

2.4.3  More details

This dataset contains telemetry and computer vision metrics collected from a Smart Agriculture co-robotics
system developed by Augmenta (acquired by CNH Industrial). The system consists of a tractor equipped with
a "Field Analyzer" and an autonomous drone (UAV).

The data was collected to train Machine Learning models (specifically XGBoost) to predict the should fly
event—a signal that triggers the drone to launch and assist the tractor when the tractor's onboard cameras are
blinded by environmental factors (e.g., sun glare/lens flare).

This work was conducted as part of the MLSysOps project (EU Horizon Europe).

System Context

The Augmenta system automates the application of fertilizers and herbicides using Real-Time Computer Vision.
1. Normal Operation: The tractor cameras detect weeds and spray precisely.

2. The Problem: When the sun is at a specific angle (e.g., sunset/sunrise), it creates lens flare, blinding the
tractor's camera ("Sensor Fault"). The system enters "Safe Mode" and sprays the whole field blindly, wasting
chemicals.

3. The Solution: The system predicts this fault and deploys a Drone to fly ahead of the tractor. The drone sends
clear weed detection coordinates back to the tractor, allowing precise spraying to continue.

Data Dictionary

The dataset consists of time-series telemetry. The core goal is to predict should fly using the sensor and
performance metrics.

Column Name Type Description

timestamp datetime | ISO 8601 Timestamp of the recording.

quality indicator_1 int Confidence metric: Number of data correspondences between samples.
quality_indicator_ 2 int Confidence metric: Number of data points used for localization.
field_indicator_1 int The number of detected weeds in the current frame.

field_indicator_2 float Fraction of the field frame under environmental variation.
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sensor_fault_probability 1

environment_sensor_1
processing_performance

success_rate
should_fly

heading

velocity

latitude

longitude

altitude
time_since_sensor_fault

Statistical Summary

Descriptor

quality indicator_1
quality_indicator_ 2
field_indicator_1
field_indicator_ 2
sensor_fault_prob_1
environment_sensor_1
processing_perf
success_rate
should_fly

heading

velocity

altitude

Collection Methodology

float

float
float
float

nt

float
float
float
float

float
float

Count

1053
1053
1053
1053
1053
1053
1053
1053
1053
1053
1053
1053
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Key Feature: Probability of the camera sensor being blinded by the sun
(0.0 to 1.0).

Ambient light/environmental condition measurement.

Average processing speed/performance metric of the vision unit.
Fraction of successfully processed image frames (0.0 to 1.0).

Target Variable: Binary flag (0 or 1). 1 indicates the drone should be
deployed.

Instant heading of the vehicle (radians).

Instant velocity of the vehicle (m/s).

GNSS Latitude.

GNSS Longitude.

GNSS Altitude (meters).

Time (seconds) elapsed since the last sensor fault

Mean Std Min | 25% flgloﬁdian) 75% Max
545.06 | 14527 9.0 454.0 | 531.0 631.0 1051.0
413.88 | 119.38 | 64.0  324.0  396.0 492.0 835.0
52.12 58.25 0.0 18.0 37.0 66.0 767.0
0.015 0.010 | 0.001 0.008  0.013 0.021 0.086
0.185 0.271 0.000 | 0.0002 @ 0.086 0.384 0.999
10187.9 | 8416.8 H 808.5 2456.2 8959.3 20497.2 | 25678.0
12.48 1.98 4.99 10.48 13.03 14.44 15.52
0.51 0.47 0.00 | 0.00 0.57 1.00 1.00
0.37 0.48 0.0 0.0 0.0 1.0 1.0
0.81 1.66 -3.13 | -0.66 1.34 2.48 3.13
2.72 0.99 0.01 2.22 2.78 3.33 5.25
276.11 | 3897 | 2542 2557 | 270.9 273.5 443.5

e Location: Perivlepto, Volos, Greece (Augmenta Test Field).

e Conditions: Data was specifically collected during sunset/sunrise to induce lens flare and trigger the
"Safe Mode" (sensor fault) scenarios.

e Equipment:

o Tractor Node: Standard agricultural tractor with Augmenta Field Analyzer (Cameras + Edge

Compute).
o Drone Node: Custom UAV integrated with the Augmenta control stack.

e Protocol: The tractor performed "Back-and-Forth" scanning of the field. As the tractor turned into the
sun, the sensor_fault_probability spiked, triggering the should_f1ly signal for the drone.
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2.5 Telemetry Dataset for Anomaly Detection
2.5.1 Link
https://zenodo.org/records/18311353

2.5.2 Citation

Delft University of Technology. (2026). TUD Telemetry Dataset for Anomaly Detection (v1.0.0) [Data set].
Zenodo. https://doi.org/10.5281/zenodo.18311353

2.5.3 More details
Dataset description

This dataset contains snapshots of host telemetry metrics collected during different workload conditions. It is
intended for training and evaluating anomaly detection models (e.g., reconstruction-based autoencoders).

The metrics cover:

e Per-core CPU utilization breakdown by state (percent)
e Memory metrics (bytes)

Data Generation Method

1. A node was instrumented with a telemetry pipeline (e.g., Prometheus + node exporter) to collect CPU
and memory metrics at a fixed sampling interval.

2. Multiple workload scenarios were executed (e.g., no load / medium load / high load).

3. Metrics were exported to CSV with a fixed column order. Each row represents one telemetry snapshot.

e CPU values are percentages per core and CPU state. Due to sampling/aggregation, values may
occasionally slightly exceed 100.
e node memory MemTotal bytes is constant for a given machine (total installed memory).

Columns

All CSV files share the same schema (38 columns). Units and meanings are listed below.

CPU columns (percent)

For each coreiin {0,1,2,3}, the following columns represent the percentage of time spent in the given CPU state
during the sampling window:

e cpu i idle, cpu i iowait, cpu i irq, cpu_i nice, cpu_i_softirq, cpu_i steal, cpu_i_system, cpu i _user
Memory columns (bytes)

e memory used bytes: used memory in bytes (as exported by the telemetry pipeline)
e node memory Buffers bytes: memory used for buffers
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e node memory Cached bytes: memory used for page cache
e node memory MemAvailable bytes: estimate of memory available for starting new applications
e node memory MemFree bytes: unused memory

e node memory MemTotal bytes: total installed memory

Column descriptions (full list)

Column Unit Description
cpu_0_idle % Core 0 CPU time in idle state
cpu_0 iowait % Core 0 CPU time waiting on I/O
cpu 0 irq % Core 0 CPU time servicing interrupts
cpu_0 nice % Core 0 CPU time for niced processes
cpu_0_softirq % Core 0 CPU time servicing softirqs
cpu_0_steal % Core 0 CPU time stolen (virtualization)
cpu_ 0 system % Core 0 CPU time in kernel space
cpu_ O user % Core 0 CPU time in user space
cpu_l idle % Core 1 CPU time in idle state
cpu_l iowait % Core 1 CPU time waiting on I/O
cpu_l irq % Core 1 CPU time servicing interrupts
cpu_1 nice % Core 1 CPU time for niced processes
cpu_1 softirq % Core 1 CPU time servicing softirqs
cpu_1 steal % Core 1 CPU time stolen (virtualization)
cpu_1 system % Core 1 CPU time in kernel space
cpu_1 user % Core 1 CPU time in user space
cpu_2 idle % Core 2 CPU time in idle state
cpu_2 iowait % Core 2 CPU time waiting on I/O
cpu_2 irq % Core 2 CPU time servicing interrupts
cpu_2 nice % Core 2 CPU time for niced processes
cpu_2 softirq % Core 2 CPU time servicing softirqs
cpu_2 steal % Core 2 CPU time stolen (virtualization)
cpu_2 system % Core 2 CPU time in kernel space
cpu_2 user % Core 2 CPU time in user space
cpu_3 idle % Core 3 CPU time in idle state
cpu_3 iowait % Core 3 CPU time waiting on I/O
cpu_ 3 irq % Core 3 CPU time servicing interrupts
cpu_3 nice % Core 3 CPU time for niced processes
cpu_3_softirq % Core 3 CPU time servicing softirqs
cpu_3 steal % Core 3 CPU time stolen (virtualization)
cpu_3 system % Core 3 CPU time in kernel space
cpu_3 user % Core 3 CPU time in user space
memory_used_bytes bytes Used memory
node_memory Buffers bytes bytes Buffers
node_memory Cached bytes bytes Cached
node_memory MemAvailable bytes bytes MemAvailable
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node_memory MemkFree bytes bytes MemFree
node_memory MemTotal bytes bytes MemTotal

Summary statistics

The following table reports per-column data type and summary statistics (min / median / max).

This table was computed from the provided file.

Column Type Min Median Max
cpu 0 idle float64 0 29.03 100.5
cpu_ 0 iowait float64 0 0.02 16.43
cpu 0 irq float64 0 0 21.77
cpu_0 nice float64 0 0 18.78
cpu_ 0 softirq float64 0 0 13.74
cpu 0 steal float64 0 0 18.48
cpu_0 system float64 0 0.48 22.55
cpu_ O user float64 0 30.5 63.15
cpu_1 idle float64 0 29 104
cpu_1 iowait float64 0 0.02 22.61
cpu_ 1 _irq float64 0 0 20.17
cpu_1 nice float64 0 0 17
cpu_1 softirq float64 0 0 26.32
cpu_1 steal float64 0 0 17.09
cpu_1 system float64 0 0.43 35.32
cpu_1 user float64 0 30.63 75.72
cpu 2 idle float64 0 28.91 100.4
cpu_2 iowait float64 0 0.01 19.66
cpu 2 irq float64 0 0 14.42
cpu_2 nice float64 0 0 19.61
cpu_2 softirq float64 0 0 16.19
cpu_ 2 steal float64 0 0 15.58
cpu_2 system float64 0 0.45 33.33
cpu_2 user float64 0 30.7 86.3
cpu 3 idle float64 0 29.01 112.5
cpu_3 iowait float64 0 0.02 14.85
cpu 3 irq float64 0 0 17.67
cpu_3 nice float64 0 0 19.58
cpu_3 softirq float64 0 0 19.25
cpu_3 steal float64 0 0 15.61
cpu_3 system float64 0 0.44 29.21
cpu_3 user float64 0 30.62 70
memory_used_bytes float64 8.89095e+08 | 1.70806e+09 3.32244e+09
node_memory Buffers bytes float64 1.05865e+08 ' 1.16023e+08 1.18623e+08
node_memory Cached bytes float64 5.08577e+09 | 5.39835e+09 5.57918e+09

21



MLSysOps D6.4 MLSysOps Open Datasets

node_memory MemAvailable bytes float64 5.00084e+09 | 6.61521e+09 7.43418e+09
node_memory MemkFree bytes float64 0 1.26609e+09 1.96274e+09
node_memory MemTotal bytes float64 8.32328e+09 | 8.32328e+09 8.32328e+09

Reproducing the statistics table

To recompute the summary statistics for one or more CSV files (e.g., all training files plus the test file), run the
following locally (requires pandas and numpy):

python - <<"PY"
import glob

import numpy as np
import pandas as pd

# Edit paths as needed
files = glob.glob("data/*.csv") + ["telemetry.csv"]

frames = [pd.read _csv(f) for f in files]
df = pd.concat(frames, ignore_ index=True, sort=False)

rows = []
for col in df.columns:
s = df[col]

dtype = str(s.dtype)
if pd.api.types.is _numeric_dtype(s):
arr = s.to _numpy(dtype=float)
rows.append((col, dtype, np.nanmin(arr), np.nanmedian(arr),
np.nanmax(arr)))
else:
rows.append((col, dtype, np.nan, np.nan, np.nan))

print("| Column | Type | Min | Median | Max |")

prant("|-=-|-=-:]=-=: |-t [-==1 | ")
for col, dtype, mn, med, mx in rows:
def fmt(v):
if isinstance(v, float) and np.isnan(v):
return ""

av = abs(float(v))
if av >= 1le6:

return f"{v:.6g}"
return f"{v:.4g}"

print(f"| “{col}" | “{dtype} | {fmt(mn)} | {fmt(med)} | {fmt(mx)} |")
PY
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2.6  Object Storage Transfer Speeds Dataset
2.6.1 Link
https://zenodo.org/records/18412125

2.6.2 Citation

Fehér, M. (2026). Chocolate Cloud Object Storage Transfer Speeds Dataset (v1.0.0) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.18412125

2.6.3 More details

Overview

This dataset measures upload and download performance between Fly.io gateway regions (origins) and
commercial object storage backends (targets). Each row is one measurement for a specific data size, initiated
from a Fly.io region and recorded against a particular backend, and is intended for studying network
performance, latency-sensitive placement, and cross-region transfer behavior.

Some records use 1-byte uploads/downloads to approximate latency by activating the target service's data path
with minimal payload. For each timestamp, measurements include standard sizes (1 byte, 1 MB, 10 MB, 50
MB) plus a few random sizes up to 50 MB. The dataset includes ~900.000 measurements spanning 86 days
between 2024-10-31 and 2025-01-24, with a pause from 2024-11-18 to 2024-12-18. Each measurement is
uniquely identified by (timestamp, origin fly region, target backend id, size bytes).

CSV Columns

e timestamp: UTC datetime string for the measurement (timezone-aware, ISO 8601).

e origin fly region: Fly.io gateway region code (3-letter).

e origin countrycode: ISO 3166-1 alpha-2 country code (lowercase) for the Fly.io gateway.
e origin city: City of the Fly.io gateway.

e origin lat: Latitude of the Fly.io gateway.

e origin lng: Longitude of the Fly.io gateway.

e target backend id: Internal storage backend ID.

e target provider: Cloud provider name.

e target region: Cloud provider region.

e target countrycode: ISO 3166-1 alpha-2 country code (lowercase) for the backend location.
e target city: City of the storage backend.

e target timezone: Time zone name for the backend.

e target lat: Latitude of the storage backend.

e target lng: Longitude of the storage backend.

e target local time: Local time at the target backend for the same instant as timestamp.
e distance km: Great-circle distance between origin and target, in kilometers (rounded int).
e size bytes: Data size in bytes for the measurement.

e upload time ms: Upload time in milliseconds.

e download time ms: Download time in milliseconds.

e upload speed mbps: Upload speed in megabits per second (2 decimal places).

e download speed mbps: Download speed in megabits per second (2 decimal places).
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Intended Use Examples

Compare upload/download performance across cloud providers and regions for a fixed data size.
Identify nearest or best-performing storage backends for a given Fly.io region.

Analyze how geographic distance correlates with throughput.

Build placement or replication strategies based on observed network performance.

Use as input for predictive models of transfer time or throughput.

Notes

e Rows are sorted by timestamp ascending.
¢ City names may contain commas and are properly quoted in the CSV.
e There are no missing values

Related ML Models

Models trained on this dataset are published at: https://zenodo.org/records/18288840

These models predict transfer time for a specific Fly.io region to storage-backend route at a given time and data
size. There is a separate model for six backends and the Fly.io London (1hr) region.

The target backend idcolumn is the internal unique ID of a region for a commercial cloud storage provider
and is consistent with the backend identifiers used in the published models.
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2.7 Job Placement Failure Dataset for Simulated Datacenter Clusters with Reconfigurable Optical
Networks

2.7.1 Link
https://zenodo.org/records/18485585
2.7.2  Citation

Patras, A., Syrivelis, D., & Terzenidis, N. (2026). MLNX Job Placement Failure Dataset for Simulated
Datacenter  Clusters with Reconfigurable Optical Networks (1.0.0) [Data set]. Zenodo.
https://doi.org/10.5281/zenodo. 18485585

2.7.3  More details

This dataset contains cluster-level snapshots and job placement outcomes generated using a simulated large-
scale datacenter environment. The data is intended for training and evaluating machine learning models that
predict whether a job submission will succeed or fail given the current cluster state and job resource request.

The dataset was produced as part of the MLSysOps project (EU Horizon Europe) and supports research on:

e job admission control,

e failure prediction,

e resource fragmentation,

¢ and network feasibility in modern datacenter architectures.

Each data sample represents a single scheduling decision and includes both:

e detailed cluster state features, and
e the observed outcome of the placement attempt.

Simulated Datacenter Architecture

The dataset is generated using a proprietary datacenter simulator modeling a hierarchical cluster composed of
Scalable Units (SUs).

Cluster configuration:

e 32 Scalable Units (SUs)

e 32 servers per SU (1024 servers total)

e 8 leaf switches per SU

e 8 GPUs per server

e Leaf switches interconnected via a reconfigurable optical circuit switch (OCS)

Failure Modes Captured
Each job placement attempt can result in:

e Successful placement
e Failure due to insufficient servers
e Failure due to insufficient or infeasible uplink connectivity

While server insufficiency can be determined via simple capacity checks, uplink infeasibility is more complex,
as it depends on:
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e current optical circuit configurations,
e contention between jobs,
e and connectivity constraints of the OCS fabric.

The dataset explicitly captures these outcomes to support learning-based approaches for failure prediction.
Dataset Structure

e Format: Apache Parquet
e  Granularity: One row per scheduling decision
e FEach row contains:

1. Job request features

2. Cluster state features (scalar + vector)

3. Ground-truth placement outcome label

Rows are treated as independent samples.
Ground-Truth Labels

The dataset includes a label column encoding the observed outcome of the job placement:

Value = Meaning

0 Job placement succeeded

1 Job placement failed due to insufficient servers

2 Job placement failed due to insufficient uplinks / infeasible network connectivity
Notes:

e Labels I and 2 both indicate job failure, but with different root causes.
e This encoding allows:

o binary failure prediction,

o failure cause analysis,

o and future multi-class modeling.

Feature Description

Scalar Cluster Features

These features summarize utilization, imbalance, and fragmentation across the cluster:

Column Description

fl _event type The recorded event: add, failed server, failed uplink
f2_mean_util Mean server utilization

f3_diff max min_util Utilization imbalance across SUs

f4 cv_util Coefficient of variation of server utilization
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f5 ratio_ max to mean workload
f6_mean_uplink util
f7_diff max min_uplink util
f8 cv_uplink util

f9 mean_combined util
f10_resource_imbalance
f11_bottleneck ratio

f12 frag spread sus

f13 frag wasted

fl14 frag su sparseness
f15_total servers used
f16_total sus used

f17 total uplink utilized

Vector Features

Feature Description

f18 su server bitmap
f19_leaf up

Job Request Feature

Column Type

20 requested nodes int / float

Feature Description

Scalar Cluster Features

D6.4 MLSysOps Open Datasets

Workload skew across SUs

Mean uplink utilization

Uplink utilization imbalance

Coefficient of variation of uplink utilization
Combined compute and network utilization
Compute vs network mismatch
Network-to-compute utilization ratio
Fragmentation due to SU spread
Fragmentation due to wasted capacity
Intra-SU sparseness

Total servers in use

Number of active SUs

Total uplink usage

Binary vector (length 1024) indicating per-server usage

Vector (length 256) indicating leaf switch uplink utilization

Description

Number of nodes requested by the job

These features summarize utilization, imbalance, and fragmentation across the cluster:

Column

fl _event type

Description

The recorded event: add, failed server, failed uplink
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f2_mean_util
f3_diff max min_util

f4 cv_util

f5 ratio_ max to mean workload
f6_mean_uplink util
f7_diff max min_uplink util
f8 cv_uplink util

f9 mean_combined util
f10_resource imbalance
f11_bottleneck ratio

f12 frag spread sus

f13 frag wasted

fl14 frag su sparseness
f15_total servers used
f16_total sus used

f17 total uplink utilized

Vector Features

Feature Description

f18 su server bitmap
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Mean server utilization

Utilization imbalance across SUs
Coefficient of variation of server utilization
Workload skew across SUs

Mean uplink utilization

Uplink utilization imbalance

Coefficient of variation of uplink utilization
Combined compute and network utilization
Compute vs network mismatch
Network-to-compute utilization ratio
Fragmentation due to SU spread
Fragmentation due to wasted capacity
Intra-SU sparseness

Total servers in use

Number of active SUs

Total uplink usage

Binary vector (length 1024) indicating per-server usage

f19_leaf up Vector (length 256) indicating leaf switch uplink utilization

Job Request Feature

Column Type

20 requested nodes int / float

Data Collection Methodology

e Environment: Simulated datacenter

Description

Number of nodes requested by the job
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e Workloads: Synthetic job traces with varying sizes and arrival patterns
e Placement policy: Simulator-internal scheduling logic
e Labeling: Determined by placement outcome (success or failure cause)

The simulator executes job placement attempts under varying load, fragmentation, and network conditions to
generate diverse training examples. The simulator itself is not publicly released. Only the resulting dataset is
provided.

Statistical Summary

The dataset contains a total of 1,062,943 rows, each corresponding to a single job placement attempt in the
simulated cluster.

The table below summarizes the distribution of all numeric columns, including the ground-truth label.

Column Summary and Data Types

Descriptor Type | Count Mean | Std Min | 25% fl\(ilofdia 75% | Max
n)

11_failed int32 i3062’9 2'619 3'712 0.0 0.0 0.0 1.0 2.0
£ mean_ util ;'loat?) 41‘3062,9 8.912 8.108 2.007 2.890 0.9404 3.971 L0
f3_diff max_min_util Soaﬁ i’3062’9 (3)‘5 84 2‘3 300 (3)‘281 05625 1.0 1.0
f4 cv utl ;'loat?) 41‘3062,9 8.198 3.304 0.0 8.071 0.1446 8.250 2.567
lt;Slg;ititio_max_to_mean_wor iloat3 i,3062,9 ; 186 ;.229 L0 i .029 1.0633 E1g 122 1.0
f6_mean_uplink_util SoaB i’3062’9 3‘563 2‘1 B 00 2‘519 0.5840 3‘63 6 2'95 ?
if;7_diff_max_min_uplink_ut ;'loat?) 41‘3062,9 2.901 g 171 0.0 2.8 12 0.9063 2.968 20
f8 cv_uplink util ;'loat?) 41‘3062,9 (1).468 2.302 0.0 2.352 0.4258 2.507 (?;.873
9 mean_combined _util ;'loat?) 41‘3062,9 (;.738 2.100 8.003 8.713 0.7563 2.791 2.971
f10_resource imbalance gloat3 i3062’9 (3)'349 8'101 (1)'000 (3)'280 0.3350 (3)'404 2'892
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. float3 1,062,9 0.613  0.113 0.563
f11_bottleneck ratio ) 43 . . 0.0 6 0.6345
float3 1,062,9 1.071  0.081 1.026
f12 frag spread sus ) 13 3 g 1.0 ) 1.0524
float3  1,062,9 0.071  0.081 0.026
f13 frag wasted ) 13 3 2 0.0 ) 0.0524
float3 1,062,9 0.017  0.017 0.006
fl14 frag su sparseness ) 43 . 6 0.0 5 0.0135
f15_total servers used int64 1,062,9 19348 | 1114 8 912 963
- - - 43 6 7
f16_total sus used int64 i3062’9 31.11 3,10 1 31 32
17 total uplink utilized int64 1,062,9 1 4617. | 946.6 0 4256 4784
- - - 43 66 3
20 requested nodes int64 i3062’9 5496  38.77 8 20 44

The 11_failed column encodes job outcomes as:

e (: success
e 1: failure due to insufficient servers
e 2: failure due to insufficient uplinks / infeasible connectivity

Both 1 and 2 correspond to job failures.

Working with the Data

Loading the Dataset (Python)

import pandas as pd
df = pd.read_parquet("final merged.parquet")
print(df.head())

Loading Selected Columns

cols = ["f20_requested nodes", "f2 mean_util", "11 failed"]
df = pd.read_parquet("final merged.parquet"”, columns=cols)

Tools and Documentation

Apache Parquet specification: https://parquet.apache.org/docs

Pandas Parquet I/O: https://pandas.pydata.org/docs/reference/api/pandas.read parquet.html

PyArrow Parquet support: https://arrow.apache.org/docs/python/parquet.html

0.689

1.092

0.092

0.023

995

32

5216

87

1.737

4.0

0.258

1024

32

7863

128
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Intended Use
This dataset is intended for:

e machine learning research on job failure prediction,

e benchmarking admission-control models,

e studying resource fragmentation and network feasibility,
o offline evaluation of scheduling heuristics.

It is not intended to represent any specific production datacenter.
Limitations

e Data is generated from a simulator, not a production system.

o The cluster topology is fixed and may not generalize to other architectures.
e Temporal dependencies between jobs are not explicitly modeled.

e Network behavior is abstracted and may differ from real optical fabrics.
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2.8 FPGA Telemetry Dataset for ML Inference Experiments on AMD/Xilinx ZCU102 MPSoC
Development Board

2.8.1 Link
https://zenodo.org/records/18494461

2.8.2 Citation

Patras, A. (2026). UTH FPGA Telemetry Dataset for ML Inference Experiments on AMD/Xilinx ZCU102
MPSoC Development Board (1.0.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.18494461

2.8.3 More details

This dataset contains telemetry traces from repeated machine learning inference experiments executed on a
Xilinx ZCU102 FPGA platform. Each experiment corresponds to a specific DPU bitstream configuration (DPU
size and number of DPU compute units), a model variant (including pruning variants), and a system workload
mode applied on the ARM CPU.

The dataset is intended to support research on:

e FPGA-based ML inference performance,

e DPU scaling and configuration trade-offs,

e interaction between FPGA accelerators and ARM CPU workloads,
e power, memory bandwidth, and system-level telemetry analysis.

Each experiment produces a time-series telemetry trace recorded during a batch inference run.

Dataset Structure

The dataset is organized into two main components:

e experiments.csv — index file
One row per experiment run, describing its configuration.
e data/<experiment id>.csv — telemetry trace
Time-series telemetry recorded during the corresponding experiment.

experiments.csv is the entry point to the dataset. Each row describes one complete experiment run on the
FPGA.
Index Columns

Column Description

Unique identifier for the experiment run. Used to locate the trace at

Experiment ID
Aperimen data/<experiment_id>.csv.
DPU CU# Number of DPU compute units (parallel inference threads).
DPU Size DPU configuration size. The dataset includes 8 sizes and 26 total configurations when

combined with CU counts.
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Model executed during the experiment. Pruning variants are encoded in the name (e.g.,

Model
ode resnet18-25 for 25% pruning).

Background workload on the ARM CPU: None, C-H (compute-bound), or M-H (memory-

Workload Mode bound).

Experiments Overview

Aspect Description
Hardware platform Xilinx ZCU102 MPSoC Development Board

DPU configurations | 26 total (8 DPU sizes x multiple CU counts)

Models 12 models with pruning variants (-25, -50, or none)
Run duration From seconds up to ~10 minutes
Execution mode Batch inference

Each row in experiments.csv corresponds to one full experiment run on the development board.

Telemetry Traces — data/<experiment_id>.csv
Each telemetry file contains a time series of system and inference measurements recorded during the experiment.

Time Columns

Column Description
timestamp Unix timestamp (seconds, fractional) when the telemetry row was recorded.
timestamp _human Human-readable timestamp of the same moment.

These represent the actual time at which telemetry was sampled.

Per-Thread Performance Columns (*_K)

Many columns are indexed by K, representing per-DPU compute unit (per inference thread) measurements.
K ranges from 1 to DPU CU#.

Column Pattern Description
preprocessing_time K Preprocessing latency for inference thread K.
inference time K Inference latency for thread K.
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postprocessing_time K Postprocessing latency for thread K.
job_id K Identifier of the inference job executed on thread K.
fps K Frames-per-second observed for thread K.

Memory Bandwidth Telemetry (ZCU102 Ports)

Column Description
SO read ... S4 read Read bandwidth for memory ports 0—4.

SO_write ... S4 write Write bandwidth for memory ports 0—4.

Power Telemetry

Column Description
arm_power Instantaneous power consumption of the ARM CPU subsystem.

fpga power Instantaneous power consumption of the FPGA fabric.

CPU Utilization (ARM Cortex-A53)

Column Description

cpu 0, cpu_1, cpu 2, cpu 3 Utilization of the four ARM Cortex-A53 cores.
Memory Metrics

Column Description

memory_available Available system memory at sampling time.

memory_total Total system memory.

swap_free Free swap space.

Experiment Linkage

Column Description
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experiment_id Experiment identifier matching the filename and the index in experiments.csv.

How to Use the Dataset

e Select an experiment from experiments.csv based on:
o DPU configuration (DPU Size, DPU CU#)
o model variant (Model)
o workload mode (Workload Mode)
e Open the corresponding telemetry trace:
o data/<experiment id>.csv
e Analyze:
o inference latency breakdown (pre / infer / post),
o per-thread throughput (fps_K),
o memory bandwidth usage (S* read, S* write),
o CPU utilization and power behavior under different workloads.

Intended Use
This dataset is intended for:

o FPGA performance analysis,

e ML inference benchmarking,

e system-level telemetry studies,

e research on accelerator—CPU interaction.

It represents a controlled experimental environment, not a production deployment.
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3 MLSysOps Produced Models

On this section we introduce in detail every model that is made public in the context of MLSysOps. For every
entry we provide the Zenodo and the GitHub links, the citation that was produced by Zenodo when the dataset
was uploaded as well as copied information from the Zenodo entry.

All models developed are openly available both in the Zenodo community and the GitHub organization.

MLSysOps Zenodo Community: https://zenodo.org/communities/mlsysops

MLSysOps GitHub Organization: https://github.com/mlsysops-eu

3.1 Cluster VM Management Model
3.1.1 Links
Zenodo: https://zenodo.org/records/18177473

Github: https://github.com/mlsysops-eu/model-cluster-vm-management

3.1.2 Citation

Aslanidis, T., & Chatzopoulos, D. (2026). UCD Cluster VM Management Model (ONNX) (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.18177473

3.1.3  More details

This repository contains a Deep Reinforcement Learning agent (trained using Maskable PPO) for optimizing
Virtual Machine placement and lifecycle management. The model is exported as a platform-independent ONNX
file for easy deployment.

It includes a complete inference pipeline that handles raw JSON infrastructure states, serializes them for the
neural network, and translates the output into human-readable actions.

Project Structure

'— model/

| '— vm_management_agent.onnx # The trained Neural Network

| L model config.json # Model Card & Configuration

F—— src/

| F—— inference_engine.py # Wraps ONNX runtime for predictions

| F—— infra_state_serializer.py # Converts JSON tree -> 801-dim Float Vector
| L action_interpreter.py # Converts Model Output -> Human-readable
Strings

F—— demo.py # Main entry point to run all test
scenarios

F—— generate_scenarios.py # Script to generate test JSON files

F—— requirements.txt # Python dependencies

L — README.md
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Limitations & Model Constraints

This agent is specialized for a specific environment configuration. The model weights are tied to these boundary
conditions:

Installation

It is recommended to use a virtual environment to keep dependencies isolated.

1. Clone the Repository

git clone https://github.com/tgasla/MLSysOps-VM-Management-Agent.git
cd MLSysOps-VM-Management-Agent

2. Create and Activate Virtual Environment

Linux / macOS:

python3 -m venv venv
source venv/bin/activate

Windows (PowerShell):

python -m venv venv
.\venv\Scripts\Activate.psl

3. Install Dependencies

pip install -r requirements.txt

Quick Start

To verify the agent is working, simply run the demo script. This will automatically check for test scenarios (and
generate them if missing) and run the agent against them.

python demo.py
Output Example:

--- # Testing Scenario: scenario_2.json ---
e Input Job Req: 8 cores
@ Raw Action: [13 2 2]

Action: Create VM
-> Location: Host 3
-> VM Type: Large (ID: 2)

Python Usage Guide

If you want to integrate this agent into your own application, here is the standard workflow:
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import json

from src.inference_engine import MLSysOpsVMManagementAgent
from src.infra_state_serializer import InfraStateSerializer
from src.action_interpreter import ActionInterpreter

# 1. Initialize Components

# (Paths are relative to where you run the script)
config path = "model/model config.json"

model path = "model/vm_management_agent.onnx"

agent = MLSysOpsVMManagementAgent(model path, config path)
serializer = InfraStateSerializer(config path)
interpreter = ActionInterpreter(config path)

# 2. Load Infrastructure State

# You can pass a dictionary or a file path

with open("scenario 1.json", "r") as f:
state _data = json.load(f)

# 3. Prepare Inputs

# Serialize the complex tree structure into the model's expected vector
infra_vector = serializer.serialize(state_data)

# Get the pending job requirements (scalar)

job_req = state_data.get("total job cores waiting", 0)

# 4. Predict
# The agent returns a raw discrete vector (e.g., [1, 12, @, 2])
raw_action = agent.predict(infra_vector, job_req)

# 5. Interpret
# Convert raw numbers into a meaningful string
explanation = interpreter.humanify(raw_action)

print(f"Agent Recommendation: {explanation}")

Test Scenarios

The generate_scenarios. py script creates three distinct situations to test the Al's decision-making

e Scenario 1: 32 Hosts (Empty) + 0 Waiting Jobs.

o Expectation: Do Nothing.
e Scenario 2: 8§ Hosts (Empty) + 8 Cores Waiting.

o Expectation: Create a VM (likely Large) on any available host.
e Scenario 3: 16 Hosts (Populated with VMs) + 0 Waiting Jobs.

o Expectation: Destroy a VM.
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Configuration & Model Card

The file model/model_config.json serves as the Model Card. It defines the exact input/output
specifications and schema the model was trained on.

Important: You are not expected to change this file. The ONNX model's weights are permanently tied to these
dimensions and definitions.

e vector_length: 801 (The fixed input array size).

e action_decoding: Maps the model's integer outputs to human-readable names (e.g., ID 0 -> "Small", ID
2 ->"Large").

e hardware definitions: Defines the VM types/flavors the model learned to manage.
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3.2 5G Jamming Attack Detection Model
3.2.1 Links
Zenodo: https://zenodo.org/records/18266543

Github: https://github.com/mlsysops-eu/model-5g-jamming-detection

3.2.2 Citation

Xu, J., Moheddine, A., Loscri, V., Brighente, A., & Conti, M. (2026). INRIA 5G Jamming Attack Detection -
LSTM Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18266543

3.2.3 More details
This model was developed by INRIA as part of the SHIELD framework:

SHIELD is a research framework designed to evaluate machine-learning-based approaches for detecting
jamming and interference in 5G networks under realistic conditions.

For a detailed description of the framework, methodology, and experimental setup, see the:

Paper: SHIELD: Scalable and Holistic Evaluation Framework for ML-Based 5G Jamming Detection

Source Code: https://github.com/mlsysops-eu/model-physical-layer-authentication

Authors

o Jiali Xu (Inria Centre at the University of Lille)

e Aya Moheddine (Inria Centre at the University of Lille)

e Valéria Loscri (Inria Centre at the University of Lille)

e Alessandro Brighente (Department of Mathematics, University of Padova)
e  Mauro Conti (Department of Methematics, University of Padova)

Purpose

This model performs real-time detection of 5G jamming and signal degradation events based on time-series
telemetry collected from a mobile device.

It outputs a probability score indicating whether the observed signal behavior is normal or anomalous, where
anomalies may correspond to intentional jamming, interference, or severe radio conditions.

The model is designed to run continuously on streaming data and make decisions at fixed inference intervals.

Training Data

The model was trained on time-series logs collected from a real Android device (OnePlus Nord 2T 5G) operating
under both normal and degraded radio conditions.

This dataset is publicly available on Zenodo: INRIA SHIELD Framework Dataset - 5G Jamming Attack
Detection
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Training data characteristics:

e Collected from live 5G operation
e Includes periods of:
o Normal network behavior
o Signal degradation
o Interference-like patterns consistent with jamming scenarios
e Derived features are computed from four signal sources:
o Extended Cell Signal Quality (ECSQ)
o Thermal sensors
o RF transmission power
o Radio signal metrics (RSRP, RSRQ, SINR)
Each sample consists of a fixed-length time window (typically 10 seconds), where multiple aggregation
functions are applied to raw signals to capture both short-term dynamics and variability.

Note: Since the model is trained on data from a specific device and chipset, performance may vary on other
devices without retraining or domain adaptation.

Model Architecture

The model is a sequence-based neural network built around a Long Short-Term Memory (LSTM) backbone,
making it suitable for learning temporal dependencies in time-series signal data.

High-level architecture:

e 2 stacked LSTM layers (hidden size: 50)
e Dropout (0.4) for regularization
e Sigmoid output layer for binary classification

For more information about the model architecture, check the model/model_config.json

The network processes a window of aggregated signal features over time and produces a single anomaly
probability score for the entire sequence.

Preprocessing (RobustScaler normalization) is integrated directly into the ONNX model, ensuring consistent
behavior between training and inference.

Model Specification
Inputs & Outputs
Input:
e Data Type: float32
e Shape: [batch_size, seq_len, 60]

o batch_size: Number of samples (typically 1 for real-time inference)
o seq_len: Sequence length, typically 10 time steps (10 seconds with 1s resampling)
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o 60: Number of features derived from 4 signal sources with 5 aggregation methods each
Feature Composition:

o ECSQ (Extended Cell Signal Quality): 6 features x 5 aggregations = 30 features

o Thermal sensors: 2 features x 5 aggregations = 10 features

o RF transmission power: 1 feature x 5 aggregations = 5 features

o Signal strength (RSRP, RSRQ, SINR): 3 features x 5 aggregations = 15 features
Aggregation Methods: mean, max, min, std, amplitude
Preprocessing: RobustScaler normalization (integrated in ONNX models, separate for PyTorch
models)

Output:

Data Type: float32
Shape: [batch_size, 1]
Range: [0.0, 1.0] (probability score via sigmoid activation)
Interpretation:
o Score > 0.5: ANOMALY (potential jamming detected)
o Score <0.5: NORMAL (no jamming detected)

Limitations

Sequence Length: The model expects time series data with a minimum sequence length. Shorter
sequences may produce unreliable results.

Feature Count: Input must have exactly 60 features. Missing or extra features will cause inference to
fail.

Data Quality: The model assumes continuous data streams. Large gaps or missing data may affect
accuracy.

Domain Specificity: Trained on specific Android device logs (OnePlus Nord 2T). Performance may
vary on different devices without retraining.

Real-time Constraints: Inference interval (default 5s) must be longer than preprocessing + inference
time to avoid queue buildup.

Buffer Dependencies: Requires all 4 buffer types (ecsq, thermal, erftx, signal) to be populated for
accurate predictions.

Model Execution

1. Create and activate a python virtual environment

python3.13 -m venv venv
source venv/bin/activate

2. Install dependencies

pip install -r requirements.txt

3. Run Inference

import onnxruntime as ort
import numpy as np

# Load model
session = ort.InferenceSession("model/lstm_jd _model.onnx")
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# Prepare input (example: batch=1, seq len=10, features=60)
input_data = np.random.randn(l, 10, 60).astype(np.float32)

# Run inference
input_name = session.get inputs()[@].name
output = session.run(None, {input_name: input data})[0]

# Interpret result

probability = output[0][0]

prediction = "ANOMALY" if probability > ©.5 else "NORMAL"
print(f"Prediction: {prediction} (score: {probability:.4f})")
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3.3  RF Fingerprinting Models for Physical Layer Authentication
3.3.1 Links
Zenodo: https://zenodo.org/records/18280776

GitHub: https://github.com/mlsysops-eu/model-physical-layer-authentication

3.3.2 Citation

Alla, 1., Yahia, S., Loscri, V., & eldeeb, . hossien . (2026). INRIA RF Fingerprinting Model Collection for
Physical Layer Authentication (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18280776

3.3.3 More Details
This repository contains a comprehensive collection of machine learning models developed by INRIA.

These models implement Physical Layer Authentication (PLA) using RF Fingerprinting. They are designed
to secure wireless networks by identifying devices based on the unique physical characteristics (fingerprints) of
their radio hardware, rather than just their digital credentials.

This record provides a "Model Zoo" covering various experimental scenarios (Trials), machine learning
architectures, and feature selection techniques.

For a detailed description of the framework, methodology, and experimental setup, see the:

Paper: Robust Device Authentication in Multi-Node Networks: ML-Assisted Hybrid PLA Exploiting Hardware
Impairments

Source Code: https://github.com/mlsysops-eu/model-physical-layer-authentication

Authors

o Ildi Alla (Inria Centre at the University of Lille)

e Selma Yahia (Inria Centre at the University of Lille)

e Valéria Loscri (Inria Centre at the University of Lille)
¢ Hossien Eldeeb (University of Cambridge)

Purpose
These models perform Binary Classification to distinguish between trusted and malicious devices:

e Authorized (Target): The specific device allowed to access the network.
¢ Rogue (Malicious): An attacker, imposter, or unknown device trying to mimic a trusted node.

The models are exported in ONNX format (Opset 18) to ensure interoperability and are designed to run on edge
devices for real-time authentication.

Repository Structure
Since this repository contains multiple models, the files are organized using the following directory structure:

/models
f—— /trial 1 # Experimental Scenario 1
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| '— /random_forest

| | |— /pca # Feature Selection Method: PCA

| | | L— model_device3.onnx

| | L— /anova # Feature Selection Method: ANOVA
| | ...

| L— /xgb

| ..

'— /trial 2 # Experimental Scenario 2

;.ll

e Trial: Corresponds to specific experimental setups (specific sets of authorized vs. rogue devices).

e Model Type: The architecture used (e.g., xgb, svc, knn).

e Feature Selection: The method used to reduce the input vector size (e.g., pca, anova, mutual info).

e Filename: Indicates the specific device ID the model was trained to authenticate (e.g.,
model device3.onnx protects Device 3).

Training Data

The models were trained on raw 1/Q signal data collected using a BladeRF AX4 Software Defined Radio (SDR)
and GNU Radio. The dataset captures the "transient" phase of RF signals (the turn-on/turn-off characteristics),
which contains the most distinctive hardware impairments used for fingerprinting.

This dataset is publicly available on Zenodo:
INRIA 1/Q Signal Dataset for RF Fingerprinting and Physical Layer Authentication
Training data characteristics:

e Source Hardware: BladeRF AX4 (20 MHz sampling rate).

e Signal Processing: Transient detection, Low-pass filtering, Discrete Gabor Transform (DGT).

e Input Features: Statistical moments (Variance, Skewness, Kurtosis, Entropy) extracted from diagonal
patches of the spectrogram.

Model Architecture
This collection includes the following architectures, all converted to standard ONNX format:

¢  XGBoost (XGB): Gradient boosting for high-performance classification.
¢ Random Forest (RF): Ensemble learning method using decision trees.

e Support Vector Classifier (SVC): Polynomial kernel SVM.

e K-Nearest Neighbors (KNN): Instance-based learning.

e Logistic Regression: Linear model for baseline comparison.

Specific hyperparameters (e.g., number of trees, kernel type) for each architecture can be found in the
models/model_config.json file included in this record.

Model Specification (Common Interface)

All models in this collection share the same input/output interface specifications:
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Inputs

e Data Type: float32

e Shape: [batch_size, n_features]

e batch_size: Number of samples (typically 1 for real-time inference).

e n_features: Dynamic. This depends on the specific model file selected (e.g., a PCA model might expect
20 features, while an ANOVA model might expect 50).

e Note: You must check the expected input shape of the specific .onnx file before feeding data.

Outputs

e Data Type: int64 (Label) and float32 (Probabilities)
e Shape: [batch_size, 1]
e Interpretation:
o Label 0: ROGUE / MALICIOUS DEVICE (Access Denied)
o Label 1: AUTHORIZED / TRUSTED DEVICE (Access Granted)

Limitations

e Feature Dependency: The input must be a feature vector extracted using the specific Gabor Transform
& Statistical parameters defined in the paper. Raw I/Q samples cannot be used directly.

e Device Specificity: A model named model device3.onnx is trained only to recognize Device 3. It will
treat all other devices (even other trusted ones) as "Rogue" relative to Device 3.

Usage Demo
To run any model from this collection, use the provided inference demo.py script.

1. Setup Environment

python3.13 -m venv venv
source venv/bin/activate
pip install -r requirements

2. Run Inference
Select a specific model file from the folder structure and run:

import onnxruntime as ort
import numpy as np

# 1. Select your model file
model path = "./models/trial 1/xgb/pca/model device3.onnx"
session = ort.InferenceSession(model path)

# 2. Check how many features this specific model needs
input_meta = session.get inputs()[9]

n_features = input_meta.shape[1]

print(f"Selected model expects {n_features} features.")
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# 3. Generate input (Replace with actual calculated features)
# Shape: [1, n_features]
dummy_input = np.random.rand(1, n_features).astype(np.float32)

# 4. Run Inference
outputs = session.run(None, {input_meta.name: dummy_input})
predicted label = outputs[@][0]

# 5. Interpret
if predicted label == 1:

print("sr ACCESS GRANTED: Authorized Device Detected")
else:

pr‘int("ﬁ ALERT: Rogue/Malicious Device Detected")
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3.4 SkyFlok Latency Prediction Models
3.4.1 Links
Zenodo: https://zenodo.org/records/18288840

GitHub: https://github.com/mlsysops-eu/model-storage-gateway-speed-prediction

3.4.2 Citation

University College Dublin, & Chocolate Cloud. (2026). Chocolate Cloud SkyFlok Latency Prediction: Gradient
Boosting Models (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18288840

3.4.3  More details

This repository contains a collection of machine learning models developed in collaboration between University
College Dublin (UCD) and Chocolate Cloud (CC).

These models are deployed within the SkyFlok Gateway component (hosted in London). They perform Latency
Prediction to estimate the time required to retrieve a file from specific cloud storage backends.

By predicting download times based on temporal patterns and file size, these models enable the Gateway to
intelligently route download requests to the fastest available storage region. This minimizes retrieval latency
and optimizes network efficiency for the end user.

The models are exported in ONNX format (Opset 18) to ensure high-performance, low-latency inference within
the real-time routing logic.

Purpose
These models perform Regression to predict a continuous value:

e Input: File size and detailed timestamps (Hour, Day, Time of Day).
e QOutput: Estimated Transfer Time (Latency) in milliseconds.

Repository Structure & Backend Mapping

Since latency characteristics vary between cloud providers, a separate model is trained for each storage backend.
Use the table below to identify which model corresponds to which cloud provider/region.

Backend . Cloud . .
D Model Filename Provider Region Location
4 model backend id 4.onnx Google Cloud jgso'[lie_ St. Ghislain, Belgium ¥
20 model backend id 20.onnx AWS eu-west-1 Dublin, Ireland X

. Microsoft WEST Amsterdam, Netherlands
39 model backend id 39.onnx Azure EUROPE —
79 model backend id 79.onnx OVH Cloud GRA Gravelines, France I
137 model backend id 137.onnx Exoscale Geneva Geneva, Switzerland &
144 model backend id 144.onnx Scaleway Warsaw Warsaw, Poland ==
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Directory Layout
/models
model backend_id 4.onnx #  Model for Backend ID 4
model backend_id 20.onnx # Model for Backend ID 20
model backend_id 39.onnx #

model backend_id 79.onnx

model backend_id 137.onnx

model backend_id 144.onnx
model config.json # Hyperparameters & metadata

[ TTTTTT

Training Data
The models were trained on historical transfer logs collected from the SkyFlok platform.
The dataset captures real-world network performance metrics across different times of day and days of the week.

Features Used:

e Workload: File size (bytes).
e Temporal: Time of day (categorical: morning, afternoon, etc.), Hour, Minute, Second, Day of Week.

Model Architecture
These models utilize a Scikit-Learn Pipeline architecture, fully converted to ONNX:

1. Preprocessing: A ColumnTransformer that handles mixed data types (One-Hot Encoding for strings, pass-
through for numbers).

2. Regressor: Gradient Boosting Regressor (2000 trees, Max Depth 12).

This architecture allows the model to capture complex, non-linear relationships between network congestion
(time of day) and transfer speeds.

Model Specification (Common Interface)
All models in this collection share the same input/output interface specifications.
Inputs

The models accept a dictionary of standard Python lists.

Input Name Type Shape Description Example

time of day String [batch, 1] Categorical time block "morning", "night"
hour Int64 [batch, 1] Hour of the day (0-23) 14

minute Int64 [batch, 1] Minute of the hour 30

second Int64 [batch, 1] Second of the minute 45
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day of week String [batch, 1] Full day name "Monday", "Friday"
size Float32 | [batch, 1] File size in Bytes 100000.0
Outputs

e Name: predicted latency
e Data Type: float32

e Shape: [batch_size, 1]

e  Unit: Milliseconds (ms)

Limitations

e Backend Specificity: model backend id 4.onnx is trained specifically on the performance history of
Backend #4. It should not be used to predict latency for other backends.

e Historical Bias: Predictions are based on historical trends; sudden network outages or unprecedented
congestion events may result in prediction errors.

Usage Demo
To run any model from this collection, follow the steps below.

1. Setup Environment

python3.13 -m venv venv
source venv/bin/activate
pip install onnxruntime

2. Run Inference

python inference_demo.py
If you prefer to integrate it into your own application, here is the minimal code required:

import onnxruntime as ort
from datetime import datetime

# --- Configuration ---
backend_id = 4
file size = 100000.0 # 100 KB

# --- Helper ---

def get time_of_day(hour):
if 5 <= hour < 12: return 'morning'
elif 12 <= hour < 17: return 'afternoon'
elif 17 <= hour < 21: return 'evening'
return 'night’

# --- 1. Prepare Input ---

# Note: Double brackets [[ ]] create the required batch dimension (Batch=1)
t = datetime.now()

inputs = {
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‘time_of _day': [[get_time_of day(t.hour)]],

"hour"': [[t.hour]],
'minute’: [[t.minute]],
'second': [[t.second]],
‘day_of week': [[t.strftime('%A')]],
'size': [[file_size]]

}

# --- 2. Run Inference ---

session = ort.InferenceSession(f"models/model backend id {backend_id}.onnx")
result = session.run(None, inputs)

print(f"Predicted Latency: {result[0][@][0]:.2f} ms")
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3.5 Smart Lamppost Noise Prediction Model
3.5.1 Links
Zenodo: https://zenodo.org/records/18290725

GitHub: https://github.com/mlsysops-eu/model-smart-lamppost-noise-prediction

3.5.2 Citation

Moti, M. H., Aslanidis, T., & Ubiwhere (Portugal). (2026). Ubiwhere Smart Lamppost Noise Prediction LSTM
Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18290725

3.5.3 More details

This repository contains a machine learning model developed in collaboration between University College
Dublin (UCD) and Ubiwhere as part of the MLSysOps project.

The model is deployed on edge devices within Smart Lampposts in Aveiro, Portugal. It performs Noise

Level Prediction to estimate future environmental noise levels based on real-time traffic and pedestrian
activity.

By predicting noise levels in advance, this model enables proactive urban management, such as dynamic
lighting adjustment or alerting city operators to potential noise pollution events before they escalate.

The model is exported in ONNX format (Opset 18) to ensure high-performance, low-latency inference on
edge hardware (e.g., NVIDIA Jetson).

Purpose
This model performs Time-Series Regression to predict a continuous value:

e Input: A sequence of past 30 readings (Noise Level, Cars, Motorcycles, People).
e  QOutput: Predicted Noise Level (dB) for the next time step.

Repository Structure

The repository provides the trained model and its configuration for easy deployment.

'— inference_demo.py # Full inference script (loads config and model)
'— model/ # Directory containing the ONNX model and config
| I— noise_model.onnx

| L model config.json

'— requirements.txt # Python dependencies

L — README.md # Project documentation
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Training Data

The model was trained on real-world sensor data collected by Ubiwhere from a Smart Lamppost installed in
Aveiro, Portugal.

The Smart Lamppost is a modular urban infrastructure equipped with video and sound sensors (camera and
microphone) to capture environmental and traffic-related data.

Time Period: 2025-08-22 to 2025-08-29

The complete training dataset is publicly available on Zenodo: Ubiwhere Smart Lamppost Dataset

Features Used

The model uses a multivariate approach, correlating traffic density with noise levels:
1. Noise Level (Target): Measured environmental noise (dB).

2. Car Detections: Count of cars detected.

3. Motorcycle Detections: Count of motorcycles detected.

4. Person Detections: Count of pedestrians detected.

Note: Other metrics present in the raw dataset (CPU Usage, Jetson Energy, Temperature, etc.) were excluded
to focus purely on the noise-traffic relationship

Model Architecture

This model utilizes a Multivariate Long Short-Term Memory (LSTM) network, fully converted to ONNX:
1. Input Layer: Accepts a sequence of shape (Batch, 30, 4) (30 time steps, 4 features).

2. LSTM Layers: Two stacked LSTM layers with 64 hidden units each to capture temporal dependencies.
3. Output Layer: A Linear layer that maps the final hidden state to a single scalar prediction (Noise Level).

This architecture allows the model to understand "inertia" (e.g., noise tends to stay high) and "causality" (e.g.,
a spike in cars leads to a spike in noise).

Model Specification

Inputs

The model accepts a single tensor representing a history window.

Input Name Shape Type Description

input [batch_size, 30, 4] float32 Normalized history of the last 30 time steps.
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Feature Order (Last Dimension):

Noise Level

Car Detections
Motorcycle Detections
Person Detections

Sl

Outputs

Output

Name Shape Type Description

input [batch_size, 1] float32 | Normalized predicted noise level for the next step.

Limitations

e Normalization Required: The model expects input values normalized between 0 and 1. Raw sensor
data must be scaled using the min/max values found in model config.json before inference.

e Location Specific: This model is trained on data from a specific street in Aveiro. Deploying it in a
different environment (e.g., a highway or a quiet park) may require fine-tuning.

Usage Demo
To run this model, follow the steps below.

1. Setup Environment

python3.13 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

2. Run Inference Script
Alternatively, you can directly run the script included in this Zenodo record to see a demonstration:

python inference_demo.py
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3.6  Drone Deployment Prediction Model
3.6.1 Links
Zenodo: https://zenodo.org/records/18299548

GitHub: https://github.com/mlsysops-eu/model-drone-deployment-prediction

3.6.2 Citation

Chouliaras, A., Aslanidis, T., & Augmenta (acquired by CNH Industrial). (2026). Augmenta Drone Deployment
Prediction Model (ONNX) (v1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18299548

3.6.3 More details

This repository contains a machine learning model developed by University College Dublin (UCD) for
Augmenta (acquired by CNH Industrial) as part of the MLSysOps project, focusing on drone deployment
prediction.

The model predicts the should_fly signal for drone operations, leveraging temporal sensor and flight data to
anticipate deployment needs ahead of time. This enables proactive drone management, accounting for
operational delays and improving decision-making in real-world scenarios.

The model is exported in ONNX format (Opset 15) for efficient inference on edge or cloud devices.
Purpose
This model performs Time-Series Classification to predict a binary signal:

e Input: A vector of features including temporal lagged variables and flight parameters (e.g., sensor fault
probability, success rate, velocity, heading).

e OQOutput: Predicted binary signal should fly indicating if the drone should deploy or not at the forecast
horizon.

Repository Structure

The repository provides the trained model and its configuration for easy deployment.

'— inference_demo.py # Full inference script

'— model/ # Directory containing the ONNX model and config
| '— drone_deployment_xgboost model.onnx

| L model config.json

'— requirements.txt # Python dependencies

L — README.md # Project documentation

Training Data

The model was trained on drone deployment data capturing sensor readings and flight parameters with temporal
dependencies engineered as lag features.
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e Data Characteristics: Time-stamped data with features such as sensor fault probability, success rate,
processing performance, velocity, and heading.

e Prediction Horizon: Forecasts the should fly signal several time steps ahead to mimic real deployment
delays.

The complete training dataset is publicly available on Zenodo: Augmenta Tractor-Drone Co-Robotics Dataset
for Weed Detection

Features Used
The model uses a rich feature set including:

e Temporal lags of:
o sensor_fault probability 1
success_rate
processing_performance
velocity
heading
Time metadata: year, month, hour
Time since last sensor fault and heading changes

O O O 0O O O O

Median fixed heading value

Model Architecture
This model utilizes an XGBoost classifier:

¢ Boosting rounds: 200 estimators

e Max tree depth: 5

e Learning rate: 0.1

e Objective: Binary logistic regression (binary classification)

The model captures complex temporal and non-linear relationships in sensor data to predict drone deployment
signals accurately.

Model Specification

Inputs

The model accepts a single tensor representing the feature vector.

Input Name Shape Type Description

float_input [batch_size, 44] float Vector of features including lags & metadata

Feature Order (Last Dimension):

List of 44 feature names is included in the model/model config.json under "features": {"names": [...]}.
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Outputs
Output Name Shape Type Description
label [batch_size] int64 Predicted class (0 or 1)
probabilities [batch_size, 2] float32 Class probabilities
Limitations

¢ No scaling applied: Model expects raw or preprocessed feature vectors matching training distributions.
¢ Domain Specific: Trained specifically for the drone deployment dataset and operational settings used;
transfer to other drone types or environments may require retraining.

Usage Demo
Setup Environment

python3.13 -m venv venv
source venv/bin/activate
pip install -r requirements.txt

Run Inference Script

python inference_demo.py

This script loads the model and performs prediction on sample input data.

57



MLSysOps D6.4 MLSysOps Open Datasets

3.7  5G Latency Optimization Prediction Model
3.7.1 Links
Zenodo: https://zenodo.org/records/18303750

GitHub: https://github.com/mlsysops-eu/model-5g-network-optimization

3.7.2 Citation

Pazienza, A. (2026). NTT DATA 5G Latency Optimization RL Prediction Model (ONNX) (v1.0.0). Zenodo.
https://doi.org/10.5281/zenodo.18303750

3.7.3 More details
This repository contains a machine learning model developed by NTT DATA.

This artifact provides an ONNX export (opset 18) of a Deep Q-Network (DQN) agent trained to select the
best data center (among 3) for a client request in a SG/MEC setting, optimizing latency-related outcomes (and
incorporating carbon intensity as a feature).

Given the current state of three candidate data centers, the model outputs Q-values for each possible selection
and chooses the data center with the highest Q-value.

Purpose
This model performs a Reinforcement Learning agent that predict a discrete value:

e Input: A normalized tensor representing the current state of three candidate data centers, shaped as
(3 x 10), where each row corresponds to a data center and each column represents a feature such as
client identifier, resource utilization, network metrics, latency statistics, packet loss, and carbon
intensity. The input is MinMax-scaled using parameters learned during training and includes a label-
encoded client identifier.

e  OQutput: A discrete action in {0, 1, 2} corresponding to the selection of the optimal data center among
the three candidates, computed as the index with the highest predicted Q-value.

Repository Structure
A typical layout (as used in the accompanying repository/bundle):

e model/
o 5g latency opt _dqn model.onnx — ONNX model (DQN Q-network)
o model config.json — model metadata, I/O specs, feature order, preprocessing parameters
e src/
o state serializer.py — builds the model input tensor from JSON scenarios and applies
preprocessing
o minmax_scaler.py — lightweight MinMax scaling implementation (training-fitted parameters)
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o inference engine.py — ONNXRuntime inference wrapper (argmax over Q-values)
o action_interpreter.py — converts predicted action to a human-readable decision
e demo.py — end-to-end demo (JSON — preprocess — ONNX inference — decoded action)
e requirements.txt — minimal Python dependencies

Training Data

The model was trained on a tabular dataset containing per-data-center telemetry and network metrics. Each
decision step groups 3 rows (one per candidate data center) into a single observation.

Features Used
The training preprocessing:

e MinMax normalization for numeric features:
cpu_usage percent
memory_usage percent
disk usage percent
net_in_percent
net_out percent
latency avg
latency mdev
lost_percent

o carbon_intensity
e Label encoding for:

o client id

O O O O O 0O O O

e Dropped columns:
o start time, end time, net in_absolute, net out absolute,
o latency min, latency max

Important: the inference pipeline must reuse the same MinMaxScaler parameters (data_min/data_max) and
the same client_id encoding mapping fitted during training.

Model Architecture

The exported ONNX model contains the SB3 DQN policy Q-network (MLP-based Q-function). The network
maps a (3x10) observation (three candidate data centers, ten features each) to Q-values for the three discrete
actions (select DCO/DC1/DC2).

At inference time, the recommended decision is argmax(Q-values).
Model Specification
Inputs

e Name: observation
o Type: float32
e Shape: (batch_size, 3, 10)
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where:

o dimension 1 = candidate data centers (always 3)
o dimension 2 = feature vector per data center

Feature Order (Last Dimension)
The last dimension (size 10) follows this exact order:

client_id (label-encoded)

cpu_usage percent (MinMax-scaled)
memory_usage percent (MinMax-scaled)
disk usage percent (MinMax-scaled)
net_in_percent (MinMax-scaled)

net_out percent (MinMax-scaled)
latency avg (MinMax-scaled)

latency mdev (MinMax-scaled)

. lost_percent (MinMax-scaled)

10. carbon_intensity (MinMax-scaled)

00N L AW

Outputs

e Name: q values
o Type: float32
e Shape: (batch_size, 3)
e Meaning: Q-values for the three actions:
o action 0 — select Data Center 0 (Milan)
o action 1 — select Data Center 1 (Rome)
o action 2 — select Data Center 2 (Cosenza)

Limitations

e The model is trained for exactly 3 candidate data centers; input shape is fixed to (3,10).
e Correct behavior depends on identical preprocessing:
o MinMax scaling must use training-fitted min/max values
o client_id must be encoded using the training-fitted mapping (unknown IDs should be handled
explicitly)
e Generalization outside the training distribution (different telemetry ranges, unseen client populations,
different operational conditions) is not guaranteed.
e This model provides a decision policy but does not guarantee optimality; it should be validated in the
target deployment setting before use.
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Usage Demo

Setup Environment

Create a Python environment and install dependencies:
python -m venv .venv
source .venv/bin/activate # (Linux/macOS)

# .venv\Scripts\activate # (Windows)
pip install -r requirements.txt

At minimum, the runtime requires:

e onnxruntime

e numpy
e Pandas
Run Inference Script

python demo.py

The demo will:
1. Load a JSON scenario containing dataCenterStates (3 entries)
2. Apply preprocessing (MinMax scaling + client id encoding)
3. Run ONNX inference via ONNXRuntime
4. Print the chosen data center index (argmax over Q-values)

D6.4 MLSysOps Open Datasets
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3.8 Anomaly Detection Model
3.8.1 Links
Zenodo: https://zenodo.org/records/18302802

GitHub: https://github.com/mlsysops-eu/model-anomaly-detection

3.8.2 Citation

Delft University of Technology. (2026). TUD Anomaly Detection Model (ONNX). Zenodo.
https://doi.org/10.5281/zenodo.18302802

3.8.3  More details

This repository contains a trained Autoencoder-based anomaly detection model developed in the context of the
MLSysOps project (Machine Learning for Autonomic System Operation in the Heterogeneous Edge-Cloud
Continuum), funded by the European Union’s Horizon Europe research and innovation programme under grant
agreement No. 101092912.

The model is exported in ONNX format for efficient inference on edge or cloud devices.
Purpose

This model performs unsupervised anomaly detection on node/VM telemetry metrics by learning to
reconstruct normal observations.

e Input: A feature vector of telemetry metrics (float values), normalized with Min-Max scaling.
¢  OQOutput: The reconstructed feature vector.

e Anomaly score: RMSE between input and reconstruction.

e Decision rule: anomaly if RMSE > threshold (threshold stored in model config.json).

Repository Structure

The repository provides the trained model and its configuration for easy deployment.

|— demo. py # Inference script (ONNXRuntime)

|— model/

| |— autoencoder.onnx # ONNX model

| L— model_config.7json # Model configuration (features, normalization,
threshold)

|— requirements.txt # Python dependencies

L— README.md # Documentation

Training Data

The model was trained on telemetry data representing normal system behavior. The training dataset is not
included in this Zenodo record unless explicitly provided in the uploaded files.
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Important: The inference input must use the same feature ordering as the training data.

Features Used (Feature Order)

The expected feature order (last dimension of the input tensor) is:

e N A o e

—_—
—_ O

W W W W W LW W W W DN DN DN DN NN NN NN /= = = = = =
0O 1 ON L A W —m O VOO IO N K W  —= O V0 03N i A WIN

cpu 0 idle
cpu_0 iowait
cpu 0 irq
cpu_0 nice
cpu_ 0 softirq
cpu 0 steal
cpu_0_system
cpu_0 user
cpu_1 idle

. cpu_1_iowait

.cpu_l irq

. cpu_1 nice

. cpu_1_softirq

. cpu_l steal

. cpu_l system

. cpu_1 user

. cpu_2 idle

. cpu_2 iowait

. cpu_2 irq

. cpu_2 nice

. cpu_2 softirq

. cpu_2 steal

. cpu_2 system

. cpu_2 user

. cpu_3 idle

. cpu_3 iowait

. cpu_3 irq

. cpu_3 nice

. cpu_3_softirq

. cpu_3 steal

. cpu_3 system

. cpu_3 user

. memory_used bytes

. node_memory_ Buffers bytes

. node_memory_ Cached bytes

. node_memory MemAuvailable bytes
. node_memory MemkFree bytes
. node_ memory MemTotal bytes

(These names must match model/model config.json)

63



MLSysOps D6.4 MLSysOps Open Datasets

Model Architecture

This mo

del is a fully-connected Autoencoder with ReLLU activations:

Encoder dims: feature size -> int(0.75*feature size) -> int(0.5*feature size) -> int(0.25*feature size)
-> int(0.1*feature_size)
Decoder dims: symmetric back to feature size

Model Specification

Inputs

Preproc

Outputs

Input name: x

Shape: [batch_size, 38]

Type: float32

Description: Min-Max normalized feature vector

essing

X_norm = (X - min) / (max - min)

If a feature has max == min (constant feature in training), normalization must avoid division by zero
(recommended: set the normalized feature to 0.0).

Optionally clamp x_norm to [0, 1] if desired (configurable via model config.json).

Output name: reconstruction

Shape: [batch_size, 38]

Type: float32

Description: Reconstructed feature vector

Post-processing (Anomaly Detection)

rmse = sqrt(mean((x_norm - reconstruction)"2)) per sample
anomaly = 1 if rmse > threshold else 0
threshold is stored in model/model config.json

Limitations

Feature order & dimension are fixed: Inputs must have exactly 38 features in the specified order.
Normalization is training-dependent: Min/Max parameters are derived from the training data
distribution; out-of-distribution inputs may yield unreliable anomaly scores.

Constant features: Features with max == min require special handling during normalization (avoid
division by zero).

ONNX output is reconstruction only: The anomaly score/label is computed in the inference script.
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Usage Demo
1. Setup Environment

python -m venv venv
source venv/bin/activate
pip install -r requirements.txt

2. Run Inference Script

python demo.py --model model/autoencoder.onnx --config model/model config.json --
csv telemetry.csv --row 0

CSV Format Requirements

e CSV must include a header row.
e Numeric columns only (or ensure the numeric columns match the 38 features exactly).
e Column order must match the feature list and model config.json.
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3.9 VM Utilization and Remaining Lifetime Predictor Model
3.9.1 Link

GitHub: https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management

Zenodo: https://zenodo.org/records/18422649

3.9.2 Citation

Bowen, S., D. Antonopoulos, C., Smirni, E., Ren, B., Bellas, N., & Lalis, S. (2026). # PeakLife (ONNX) — VM
Utilization + Remaining Lifetime Predictor (Version 1.0.0) [Computer software]. https://github.com/mlsysops-
eu/model-peaklife-predictive-vm-management

3.9.3  More details

This repository contains PeakLife, a lightweight neural model exported to ONNX for portable inference.
Given the historic utilization information for a VM, PeakLife predicts:

¢ Future CPU utilization: AvgCPU and MaxCPU (normalized)
¢ Remaining lifetime: normalized remaining lifetime (and seconds via scaling)

The repo includes a minimal demo pipeline that loads a small CSV (demodata.csv), preprocesses it to the
model’s expected inputs, runs ONNX inference, and prints the results.

Project Structure

'— model/

| '— peaklife.onnx # ONNX model
| L model config.json # Model card & Configuration
'— src/ (Optional) # Helpers for data preparation

| | DataUtil.py
| L— prepare_demodata.py

'— demo.py # Main entry point for inference demo
'— demodata.csv # Demo dataset
'— requirements.txt # Python dependencies for inference

L — README.md

Limitations & Model Constraints

This ONNX model is tied to a specific input contract and normalization:
Pre-set history length: input_length = 288 time steps by default.

e Forecast horizon: forecast length = H.
e Signals: CPU utilization-only (AvgCPU, MaxCPU). Other resources (RAM/disk/net) are not modeled
in this version.
e Normalization:
o CPU values are expected in 0—-100 in CSV and normalized by cpu_divisor (usually 100.0).
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o Remaining lifetime is normalized by max_lifetime seconds from model config.json.
e Output ranges: the model outputs are bounded to [0, 1] (Sigmoid heads), so it will not produce values
outside this range.
e Data schema requirement for demo: demodata.csv must contain at least:
VMID
AvgCPU, MaxCPU
time relative_seconds, lifetime seconds
optionally TimeStamp and MaxCPU_so_far (if missing, demo falls back to last MaxCPU)

O O O O

Installation

It is recommended to use a virtual environment to keep dependencies isolated.

1. Clone the Repository

git clone https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management
cd model-peaklife-predictive-vm-management

2. Create and Activate Virtual Environment

Linux / macOS:

python3 -m venv venv
source venv/bin/activate

Windows (PowerShell):

python -m venv venv
.\venv\Scripts\Activate.psl
3. Install Dependencies

pip install -r requirements.txt

Quick Start

Run the demo script.
python demo.py

Output Example:

--- Model Loaded ---

--- Demo Dataset Ready ---

--- PeakLife Demo ---

VMID: QdbZelFmsJ3euIQ4lwW63NwFEP+QIirT4QbIOjEGr4dpkOet8p3iQSHAEM1gKWNR
inputs shape: (1, 288, 2) | aux shape: (1, 2)

pred util shape: (1, 1, 2) | pred_life shape: (1, 1)

--- Utilization Prediction (AvgCPU, MaxCPU) ---
Pred (normalized): 3.912 , 5.861 | ©.039123 , 0.058608
True (normalized): 4.356 , 6.186 | ©.043559 , 0.061863
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--- MAPE (avg, max, and combined) ---
util mape(avg)=0.101832 | util mape(max)=0.052609 | util mape(combined)=0.077221

--- Remaining Lifetime Prediction ---
Pred remaining lifetime_norm=0.893175 | Pred
remaining lifetime_seconds=1544747.0s
True remaining lifetime_norm=0.950043 | True
remaining lifetime_seconds=1643100.0s

--- Lifetime MAPE ---
life mape=60.059858

Configuration & Model Card

The file model/model config.json serves as the Model Card and includes:
+ input_length

+ forecast_length

+ normalization.cpu_divisor

+ normalization.max_lifetime_seconds

+ input/output names and shapes (if you record them)

Important: The ONNX weights are tied to these dimensions and normalization constants.
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3.10 ML Model for Predicting Job Placement Failures in Datacenter Clusters
3.10.1 Links
https://zenodo.org/records/18486169

https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management

3.10.2 Citation

Patras, A., Syrivelis, D., & Terzenidis, N. (2026). MLNX ML Model for Predicting Job Placement Failures in
Datacenter Clusters (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.18486169

3.10.3 More details

This repository contains a trained binary classification model, exported to ONNX, that predicts whether a
submitted job will fail or run successfully, given:

e the current state of a simulated datacenter cluster, and
e the resource request of an incoming job.

The model was developed within the MLSysOps research project and is intended for offline analysis,
benchmarking, and integration into scheduling or admission-control pipelines.

Problem Statement

Modern large-scale clusters must decide whether to admit a job under uncertainty. Poor placement decisions can
lead to job failures, even when aggregate resources appear sufficient.

In this work, a job failure can occur due to two distinct causes:

1. Insufficient compute resources (servers)
If the cluster does not have enough free servers to satisfy the job request, failure can be determined
through a simple availability check.

2. Insufficient or infeasible network connectivity (uplinks)
Even when the total number of uplinks appears sufficient, the job may still fail because the required
connectivity cannot be realized.

The latter case arises from the presence of a reconfigurable optical circuit switch (OCS) interconnecting leaf
switches. Although OCS-based fabrics provide high bandwidth and flexibility, they introduce topological and
temporal constraints: not all feasible matchings between leaf switches can be realized simultaneously, and
reconfiguration constraints may prevent forming the necessary end-to-end paths.

As a result, uplink feasibility is not a simple counting problem, but a combinatorial one that depends on:

e the current circuit configuration,
e contention with existing jobs,
e and connectivity constraints imposed by the optical fabric.
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Goal:
The model learns to predict whether a job will fail due to either compute insufficiency or network infeasibility,
based on a snapshot of the cluster state and the job request.

Dataset
The model was trained and evaluated using a large-scale simulated dataset of job placement attempts.

Dataset repository (Zenodo): https://zenodo.org/records/18485585

The dataset repository provides:

e detailed system context,

e feature descriptions,

e ground-truth label semantics,
e statistical summaries,

e and usage examples.

Note: The dataset is released separately and is required to reproduce training or evaluation results.
Model Summary

e Task: Binary classification (job failure prediction)
e Framework: PyTorch

e Training orchestration: Ray Train / Ray Tune

e Export format: ONNX

e Inference backend: ONNX Runtime

The model consumes tabular features plus fixed-length vectors describing cluster utilization. Although the
dataset distinguishes between different failure causes, the released model produces a binary output:

e ot failed
e failed

Inputs and Preprocessing

e The model expects:
o scalar numeric features describing cluster utilization and fragmentation,
o fixed-length vector features representing server and uplink utilization.
e All preprocessing steps are defined in bundle.json, including:
o feature column order,
o normalization parameters (StandardScaler),
o vector dimensions.

bundle.json must always be treated as the authoritative source of truth for model inputs.
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Quick Start

Prerequisites

Install the required Python dependencies:

pip install numpy pandas pyarrow onnxruntime
or

pip install -r requirements.txt

Basic Usage

The src/inference_runtime. py script loads the ONNX model and preprocessing bundle, reads rows from
a parquet file, and outputs predictions.

Run inference on the first 1000 rows

python src/inference_runtime.py \
--onnx model/model.onnx \
--bundle model/bundle.json \
--parquet model/data.parquet \
--n 1000

Output format (per row):

0 not failed proba=0.023456
1 failed proba=0.987654
2 not failed proba=0.012345

Evaluate metrics (if ground-truth labels are available)

If your parquet file includes the ground-truth label column, you can compute evaluation metrics:

python src/inference_runtime.py \
--onnx model/model.onnx \
--bundle model/bundle.json \
--parquet model/data.parquet \
--n 1000 \
--label col 11 failed

Additional output:

Metrics on loaded rows:

accuracy=0.925980
precision=0.933392
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recall=0.910949
£1=0.922034

Command-Line Arguments

The inference script (inference_runtime.py) supports the following command-line arguments:

Argument Required | Default = Description

--onnx Yes — Path to the model.onnx file

--bundle Yes — Path to bundle.json containing preprocessing metadata
--parquet Yes — Path to the input Parquet file

--n No 1000 Number of rows to load from the Parquet file

--label col | No None Name of the ground-truth label column (used only for metrics)

If --label col is not provided, the script performs inference only and does not compute evaluation metrics.
Note: The exact feature column order and normalization parameters are stored in bundle.json.
Model Constraints

The released model is subject to several explicit constraints that must be respected for correct and meaningful
use.

Fixed Input Schema

e The model expects a fixed set of input features:
o scalar numeric features,
o aserver utilization bitmap of fixed length,
o aleaf-switch utilization vector of fixed length.
o The exact feature order, normalization parameters, and vector lengths are defined in bundle.json.

Fixed Cluster Topology Assumption

e The model is trained assuming a specific cluster architecture:
o 32 Scalable Units (SUs),
o 32 servers per SU (1024 total servers),
o 8 leaf switches per SU (256 total leaf uplinks).
e The server and uplink vectors are not dynamically resizable.
e Applying the model to clusters with:
o different numbers of servers,
o different SU layouts,
o or different network topologies
requires retraining or careful feature remapping and validation.
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Binary Output Only

e Although the dataset distinguishes between:
o server-related failures, and
o uplink-related failures, the released model produces a binary output only:
= failed
* not failed
e The model does not indicate why a failure is predicted.

Probabilistic Predictions

The model outputs a probability of failure, not a deterministic decision.
The default classification threshold is 0.5, but:

o different operational settings may require different thresholds,

o threshold tuning should consider false-positive vs false-negative trade-offs.
Predictions should be interpreted as risk estimates, not guarantees.

It is intended to be used as a decision-support component, not as a standalone scheduler.

Users integrating this model into larger systems should ensure that all constraints above are satisfied and
validated before relying on predictions in operational workflows.
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3.11 Reinforcement Learning Policy Model for Dynamic FPGA DPU Configuration Selection
3.11.1 Links

GitHub:_https://github.com/mlsysops-eu/model-peaklife-predictive-vm-management

Zenodo: https://zenodo.org/records/18494559

3.11.2 Citation

Patras, A., Lalis, S., Antonopoulos, C., & Bellas, N. (2026). UTH Reinforcement Learning Policy Model for
Dynamic FPGA DPU Configuration Selection (0.1.0). Design, Automation, and Test in Europe (DATE).
Zenodo. https://doi.org/10.5281/zenodo.18494559

3.11.3 More details

This repository provides a trained reinforcement-learning policy model, exported to ONNX, that selects an
FPGA DPU configuration—defined by DPU size and number of DPU compute units (instances)—given an
observation vector describing the current system and job context.

The model is intended for offline analysis, benchmarking, and decision support in FPGA-based ML inference
pipelines, where selecting an appropriate DPU configuration is critical for performance and efficiency.

Problem Statement

Modern FPGA platforms support multiple DPU bitstream configurations, trading off parallelism, resource
usage, and performance. Selecting an optimal configuration at runtime is non-trivial due to:

e varying model characteristics,

e changing workload intensity,

e contention between FPGA and ARM CPU resources,
¢ and complex performance—power trade-offs.

This repository addresses the problem of DPU configuration selection as a discrete decision-making task,
learned via reinforcement learning from prior experimentation.

Goal: Given an observation vector describing the system/job state, predict the most suitable DPU configuration
from a fixed action space.

Dataset

The policy model was trained using telemetry and experiment data collected from repeated ML inference runs
on a Xilinx ZCU102 FPGA platform.

Dataset repository (Zenodo): https://zenodo.org/records/18494461

The dataset provides:

e experiment configurations,
e time-series telemetry,
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e performance, power, and system metrics,
e and serves as the basis for training and evaluating this policy.

Model Summary

e Task: Discrete action selection (RL policy inference)

e Framework: Reinforcement Learning (trained offline)

e Export format: ONNX

e Inference backend: ONNX Runtime

e Output: Action index corresponding to a DPU configuration

The model outputs logits over a discrete action space. At inference time, the selected action is obtained via
argmax.

Action Space (DPU Configurations)

Each model output corresponds to one action in a fixed action space. An action maps to:

¢ DPU Size (bitstream size), and
¢ CU count (number of DPU compute units / instances).
The canonical mapping is defined in:

action_interpreter.py » DEFAULT_ACTION_CONFIGS

This mapping is part of the model contract and must remain consistent with training and export.

Model Input/Output

Note: Training used normalized observations

All numeric features must be normalized to [0, 1] wusing fixed caps/bounds (see below).
If you pass raw telemetry units directly (e.g., MB/s, W, CPU%), the model output will not be meaningful.

Observation layout (22 features total)

The model input is a single flat vector with this exact order:
System telemetry (16)

cpu_O, cpu_1l, cpu_2, cpu_3

S0 _read, S1 read, S2_read, S3 read, S4 read

S0 _write, S1 write, S2 write, S3 _write, S4 write
fpga_power, arm_power

Job static characteristics (5)

gmac, ldfm, ldwb, stfm, parameters
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Constraints (1)
target_fps

Normalization caps / bounds (training contract)

System caps:

7000
20.0

max_bw_mb_s
max_power_w

Job static bounds:

canonical depth: (18.0, 152.0) (not used in this release’s observation vector)
gmac: (0.3, 12.303)

1dfm: (©.792, 91.787)

ldwb: (3.326, 65.66)

stfm: (0.192, 61.125)

parameters: (3.5, 60.2)

Dynamic bounds (used for internal training instrumentation; not part of the released observation vector):

total fps: (10.0, 100.0)
ppw: (1.0, 100.0)

Normalization formula:

x_norm = clip((x - low) / (high - low), @, 1)

Outputs

Logits tensor of shape:
(1, num_actions) or (batch_size, num_actions)

The inference examples select:
action_idx = argmax(logits)
Usage
1. Prerequisites - install required dependencies:

onnxruntime

numpy
pandas

2. Action Interpretation

action_interpreter.py provides the ActionInterpreter utility, which:

e maps action_idx — (dpu_size, cu_count),
e produces human-readable descriptions,
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e enables consistent decoding of model outputs,
e supports action-space inspection and statistics.

Note: Changing the action ordering will silently invalidate predictions.

3. Programmatic Inference (Recommended)

Use inference wrapper.py to integrate the model into other scripts or services.

e [oad the ONNX model
e Pass one or more normalized observation vectors
e Receive decoded DPU configuration and confidence

The following example shows how to load the model and run inference on a single observation vector.

import numpy as np
from src.inference_wrapper import FPGARLInference, normalize_observation_row

# 1) Load the ONNX policy
model = FPGARLInference("fpga rl policy.onnx", verbose=True)

# 2) Option A (recommended): provide RAW features in dataset column names,

# then normalize using the same caps/bounds as training.

raw_features = {
"cpu_0": 12.5,
"cpu_1": 10.2,
"cpu_2": 8.8,
"cpu_3": 9.7,
"S@ _read": 1200.0,
"S1 read": 1180.0,
"S2 read": 150.0,
"S3 read": 120.0,
"S4 read": 90.0,
"SO_write": 220.0,
"S1 write": 210.0,
"S2 write": 35.0,
"S3 write": 28.0,
"S4 write": 20.0,
"fpga_power": 3.10,
"arm_power": 1.85,
"gmac": 1.82,
"ldfm": 25.40,
“"ldwb": 14.20,
"stfm": 9.10,
"parameters": 11.70,
"target_fps": 30.0,
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# Normalize to the 22-feature vector expected by the model

obs _norm = normalize observation_row(raw_features) # shape: (22,)
result = model.predict(obs_norm) # runs ONNX
inference

print(model.format_result(result))
print("Action index:", result["action_idx"])

# 3) Option B: pass an already-normalized observation vector (float32, 22 dims).
# (Only do this if you *know* your normalization matches training.)

obs _norm_direct = obs_norm.astype(np.float32)

result2 = model.predict(obs _norm direct, return_logits=True)

print("Top logit:", float(result2["logits"][result2["action_idx"]]))

# 4) Batch inference example (N x 22)

batch_raw = [raw_features, {**raw_features, "cpu 0": 35.0, "target fps": 60.0}]
batch_obs = np.stack([normalize observation_row(r) for r in batch_raw], axis=0)
# (N, 22)

batch_results = model.predict batch(batch_obs)
for i, r in enumerate(batch_results):
print(f"Sample {i}: {r['action_str']} (confidence={r['confidence']:.2%})")

CSV-Based Inference Demo

The onnx_inference_example.py provides an end-to-end example that:
e Joads the ONNX model,
e reads observations from a CSV file,

e runs inference row-by-row,
e prints selected actions and summary statistics.

This is useful for offline replay, inspection, and experimentation.

python3 src/onnx_inference_example.py \
--onnx model/fpga rl policy.onnx \
--csv sample data.csv \
--out inference_results.csv

Model Constraints

e The action space is fixed and cannot be extended without retraining.

e The model produces one discrete decision only (no multi-objective output).
e Predictions assume consistent feature preprocessing and observation semantics.
o Inference is stateless; temporal dependencies are not modeled.
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4 Conclusions

Deliverable D6.4 documents the successful finalization and public release of the MLSysOps Open Datasets
and Models, representing the project's commitment to open science. By curating and publishing eight public
datasets and eleven machine learning models, the consortium has provided a robust foundation for future
research in autonomic system management within the cloud-edge continuum.

The utilization of Zenodo as a central repository has ensured that all project outputs adhere to the FAIR
principles—making them Findable, Accessible, Interoperable, and Reusable for the broader scientific
community.

By providing these models primarily in the ONNX format, the project ensures cross-platform compatibility,
allowing researchers to deploy and test these solutions across varying hardware environments. Ultimately, the
MLSysOps Zenodo Community serves as a permanent, citable archive that will continue to support the
evolution of Al-controlled frameworks long after the project's formal conclusion.

END OF DOCUMENT
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