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Summary 
This document details the progress in integrating and evaluating the MLSysOps framework, which is designed 
to manage distributed applications across the cloud-edge continuum using ML models. This framework 
leverages a three-level agent hierarchy (continuum, cluster, node) to handle application deployment and 
execution, telemetry, and system configuration decisions. The key functionalities that are currently integrated 
into the framework are briefly presented, along with the integration/validation status and limitations/issues that 
were faced during integration. A general approach for integrating MLSysOps that is independent of specific use 
cases is presented. This approach outlines seven steps aimed at streamlining the onboarding process for any 
application into the MLSysOps framework and has been applied to both use cases. The concrete 
adaptation/configuration of the framework is presented for the two application use cases. In the smart city 
scenario, the framework balances power consumption and detection accuracy by using sound sensors to trigger 
image processing for traffic incident detection. In the smart agriculture use case, the framework is used to 
enhance weed detection by dynamically deploying a drone when its input is expected to significantly improve 
accuracy. Moreover, the progress with respect to the concrete KPIs is presented, both for so-called requirement 
group (RG) KPIs and project-level (P) KPIs. 
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Abbreviations 

AI  Artificial Intelligence  

API  Application Programming Interface  

ARM  Advanced RISC Machine  

AWS  Amazon Web Services  

CA Certificate Authority 

CPU  Central Processing Unit  

CQI Channel Quality Indicator 

DLRM  Deep Learning Recommendation Model  

DRL Deep Reinforcement Learning  

ENISA  European Union Agency for Cybersecurity  

FPGA  Field Programmable Gate Arrays  

FSM Finite-State Machine 

GB  Giga Byte  

gNB Next Generation Node B 

GPS  Global Positioning System  

GPU  Graphics Processing Unit  

IETF  Internet Engineering Task Force  

IMU  Inertial Measurement Unit  

IoT  Internet of Things  

IP  Internet Protocol  

KPI  Key Performance Indicator  

LIME Model-Agnostic Explanations 

LLM  Large Language Model  
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MCS Modulation and Coding Scheme 

MCU  Micro Controller Unit  

ML  Machine Learning  

NF  Network Function  

NIST  National Institute of Standards and Technology  

OCI  Open Container Initiative  

PDR Packet Delivery Ratio 

QoE  Quality of Experience  

QoS  Quality of Service  

RFC  Request For Comment  

RG  Requirement Group  

RISC  Reduced Instruction Set Computer  

RPi  Raspberry Pi  

SHAP SHapley Additive exPlanations 

SITL  Software In The Loop  

SLA  Service Level Agreement  

TB  Tera Byte  

UE User Equipment 

UPF  User Plane Function  

VM  Virtual Machine  

WP  Work Package  
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1 Introduction 
Deliverable D5.3 details the progress in integrating and evaluating the MLSysOps framework, which is designed 
to manage and optimise distributed applications across the cloud-edge continuum. This document focuses on 
how the framework is applied to real-world use cases and assesses final progress against the key performance 
indicators (KPIs). 

The MLSysOps framework uses a three-level agent system (continuum, cluster, and node) to deploy and execute 
containerised applications, manage resources, integrate telemetry, and adapt to dynamic conditions under the 
management of ML heuristics. These capabilities have been developed, tested, and evaluated in both virtual and 
physical testbeds. Two use cases demonstrate the framework's practical applications. The smart city use-case 
focuses on the energy-efficient management of smart lampposts, which utilize cameras and noise sensors to 
monitor urban activity. The goal is to reduce power consumption while maintaining detection accuracy. The 
smart agriculture use-case involves coordinating a tractor and a drone to enhance weed detection in farming, 
striking a balance between performance improvements and efficient energy use. 

Before delving into the specifics of integrating MLSysOps into the two use cases, the general integration status 
of the framework is introduced in Section 2, summarizing the functionalities and pointing to known 
limitations/issues.  

Section 3 presents the adaptation/configuration of the framework for the two application use cases. It begins 
with the generic stepwise approach used to facilitate the onboarding of any application into the MLSysOps 
framework, which comprises seven steps discussed in detail. This is followed by the development, integration, 
and results for each application's use-case. Final progress in the smart city use-case includes the successful 
deployment and operation of the MLSysOps framework across two distinct physical clusters: a private parking 
area at UBIW headquarters and public settings in Aveiro. Comprehensive data collection has been completed, 
resulting in a rich repository of noise and video telemetry used to train and evaluate an LSTM-based noise 
forecasting model. This model is now fully integrated into the agent hierarchy, enabling proactive power 
management of image processing components. In the smart agriculture use-case, the project has successfully 
demonstrated the collaborative operation of tractor and drone nodes in real-world field conditions. Over 30 GB 
of synchronized telemetry and video data were collected to train an XGBoost-based model for drone 
engagement. Evaluation results confirm that the ML-driven policy accurately predicts the need for drone 
assistance, reducing tractor "safe mode" operation, and resulting in a 12% increase in effective weed-spraying 
operation time while optimizing drone battery usage.  

Further, Section 4 and Section 5 provide a detailed assessment of the KPIs at both the requirement group (RG) 
and project (P) levels, respectively, covering various aspects, including structured system descriptions, efficient 
application deployment across the continuum, hardware configuration, system performance, energy 
consumption, and trust. Each KPI is discussed separately, also giving its current achievement level using a 
simple scale (“o” means that the KPI has not been achieved yet; “+” means that the KPI has been partially 
achieved; “++” means that the KPI has been fully achieved). To have a more global overview, Section 6 
summarizes the overall KPI achievement. The project has successfully concluded with most of its ambitious 
targets fully realized. Currently, 100% of RG-KPIs are completed or fully addressed, with 87% of those reaching 
full achievement (++). Similarly, 100% of P-KPIs have been addressed, with 80% confirmed as fully achieved 
(++). These results reflect the successful integration of the framework across the heterogeneous cloud-edge 
continuum, the validation of ML-driven autonomic operations, and the attainment of significant improvements 
in energy efficiency and system performance across all layers of the architecture. 

Finally, Section 7 summarizes the overall status of the project from the KPI perspective.   
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2  General Integration Overview  

2.1 Context 

The aim of the MLSysOps architecture is to combine different mechanisms (for deployment, telemetry and 
application/system configuration) and ML models (that can help in taking good deployment and 
management/configuration decisions) into a framework that supports the flexible and adaptive deployment and 
management of distributed applications across the cloud-edge-IoT continuum for a given system infrastructure 
slice. Figure 1 provides a high-level view of the framework architecture. 

 

Figure 1: MLSysOps framework core architecture. 

The backbone of the MLSysOps framework consists of a 3-level agent hierarchy that coordinates application 
deployment, system configuration, and telemetry mechanisms at each layer (continuum, cluster, node). The 
current implementation of MLSysOps relies on and extends as needed mature technology for the deployment 
and telemetry pillars (Karmada1, Kubernetes2, OpenTelemetry3). The agents embody the system's intelligence, 
connecting and interacting with these pillars at each layer as needed. More specifically, they capture and process 
telemetry to take system and application management and configuration decisions and then apply these 
decisions by invoking the deployment and configuration mechanisms through the southbound API. The logic 
of each agent for retrieving and processing telemetry information and taking management decisions can be 
flexibly configured through plug-in policies, which can be dynamically updated at runtime. Policies can use 
conventional heuristics or one or more ML models through the MLConnector API. Notably, the ML models 

 

1 Karmada, [Online]. Available: https://karmada.io/  
2 Kubernetes, [Online]. Available: https://kubernetes.io/  
3 OpenTelemetry [Online]. Available: https:/opentelemetry.io 
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themselves can be deployed via MLSysOps as a special type of application, exploiting computing resources that 
are part of the system slice.  

The individual functionalities of the framework have been developed in WP3 and WP4 (documented in 
deliverables D3.3 and D4.4) and are incrementally integrated in WP5. This section provides a brief description 
of the functionalities that have been successfully integrated into the MLSysOps framework, along with an 
overview of the general integration status, highlighting limitations and potential extensions. Note that since June 
2025, the MLSysOps framework and its various components have been released as open source4. 

We note that this work is referred to as “general integration” because it is not directly related to the two 
application use cases of the MLSysOps project (smart city and smart agriculture). The application-specific 
adaptation/configuration of the MLSysOps framework for each application use case is described in Section 3.    

2.2 Key Functionalities of the Integrated MLSysOps Framework 

The key functionalities supported in the integrated version of the MLSysOps framework are summarized below. 
The overall integration status for each functionality is provided in Section 2.3. 

2.2.1 Application and System Infrastructure Descriptions 

The application designer uses a suitable declarative description to capture the application's key deployment and 
orchestration requirements, resource needs, configuration options, and performance targets. A corresponding 
structured description also captures the nodes and resources available as part of the system slice managed by 
MLSysOps. These descriptions, along with telemetry information, guide the deployment and adaptation of 
applications in the continuum. Note that these descriptions also capture so-called Far-Edge nodes, which have 
significant resource constraints and do not support a proper Operating System (OS) or container runtime, 
allowing such nodes to be part of a system slice and be used as hosts for deploying and running (lightweight) 
application components. 

2.2.2 Agent Hierarchy 

Agents can be introduced at different layers of the continuum hierarchy, e.g., at the continuum level, the cluster 
level, and the node level. The agent hierarchy is involved in the initial application deployment and configuration, 
as well as in the ongoing monitoring and adaptation of the application. The continuum agent processes the 
application description and forwards it (or selected parts thereof) to individual cluster agents, which, in turn, 
proceed with deploying application components on the cluster nodes. Agents also consume telemetry 
information, use it to make application and system adaptation and reconfiguration decisions, and apply these 
decisions via the respective mechanisms. The current agent implementation follows a modular design, 
consisting of a core Python module that implements functionality shared across all agents, while each layer 
extends it with its own logic and tools. SPADE6 is used for inter-agent coordination, whereas the Fluidity 
framework5 (implemented in the context of the MLSysOps project) serves as the Kubernetes controller. Agents 
can be programmed to make decisions based on conventional heuristics or ML models, which can be engaged 
dynamically via the MLConnector API. Such logic can be provided in a flexible way, in the form of plug-in 
policies, which can be dynamically updated at runtime.  

 
4 MLSysOps open-source repositories: https://github.com/mlsysops-eu 
5 Fluidity framework: https://doi.org/10.1016/j.future.2024.03.031  

https://github.com/mlsysops-eu
https://doi.org/10.1016/j.future.2024.03.031
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2.2.3 Application Deployment 

The components of the distributed application are deployed on nodes, based on their requirements and the 
available resources. The control flow of deployment is top-down, driven by the agent hierarchy, starting from 
the continuum level, moving through the cluster level, and ending at the node level, where components are 
effectively executed. The implementation uses Karmada for the continuum-level deployment and Kubernetes 
K8S/K3S6 for the cluster- and node-level. Deployment is supported for various types of nodes, ranging from 
VMs running in datacentres and powerful workstations to standalone Smart-Edge (RPi, Jetson, ZCU102 FPGA 
SoC) nodes and highly resource-constrained Far-Edge nodes (Kallisto platform using an ARM-M4 
microcontroller) through a special gateway.  

2.2.4 Application Component Versions and Execution Enclaves 

The code of application components is packaged in the form of containers. The same application component 
can have different implementations (container images) that target different platforms and/or provide different 
performance, resource usage, and accuracy trade-offs. In addition, application components can be prepared for 
execution in different execution enclaves (plain containers7, sandboxed containers in micro-VMs8, unikernels9). 
Deployment on Far-Edge nodes is supported via special container images and execution enclaves, in 
conjunction with a gateway environment running on a powerful edge node. This environment hosts virtual 
Kubelets and an MQTT broker, supporting code deployment and communication with the Far-Edge nodes. 

2.2.5 Relocation of Application Components 

Application components can be relocated from their current host to run on a different node. Component 
relocation is achieved by deploying a new instance of the application component on the target node, followed 
by the removal of the old instance. Relocation is supported for stateless application components, which will 
initialise and start running from scratch on the new host. 

2.2.6 Application-level Communication and Traffic Redirection 

Application components may interact with each other by exchanging data/information or via client-server 
invocations over IP. An application component may implement the desired interaction through one or more so-
called services, in which case the respective contact information (Kubernetes-provided Virtual IP address) 
remains valid even if the component is relocated to a different node. The default network interface used for the 
interaction between application components (data plane) is also used for deployment control and telemetry 
(control plane). It is, however, possible to redirect application-level traffic over other network interfaces, e.g., 
to allow application components residing on nodes that have a Wi-Fi interface to communicate directly over 
such a link.   

2.2.7 Telemetry 

In tandem with the top-down deployment pillar (Karmada-Kubernetes-Kubelet), a reverse bottom-up telemetry 
pillar is implemented using OpenTelemetry (OTEL). This is used to capture system-level metrics and make this 

 
6 K3s, [Online]. Available: https://k3s.io/  
6 SPADE [Online]. Available: https://spade-mas.readthedocs.io/en/latest/readme.html 
7 https://github.com/opencontainers/runc 
8 https://katacontainers.io 
9 https://github.com/nubificus/urunc 

https://k3s.io/
https://spade-mas.readthedocs.io/en/latest/readme.html
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information available at different levels of the agent hierarchy as needed to enable required node/resource 
monitoring. It is important to note that the same telemetry pipeline can be used to capture and emit application-
level metrics from within application components running on the nodes through a generic/flexible API that 
connects to local (node-level) OTEL. Moreover, the telemetry system can be leveraged by other mechanisms 
(e.g., anomaly detection and trust score adaptation) to share status information (e.g., trust score updates) with 
the agents, allowing these updates to be considered when making management/configuration decisions. 

2.2.8 ML Model Discovery, Activation, Invocation, and Deactivation 

As mentioned above, agents can use ML models to make different system and application management 
decisions. The ML model lifecycle is supported via the MLConnector API. This can be used to search and find 
models, request the activation of an ML model, invoke the ML model, and request its deactivation. One can 
search for ML models based on simple features and elaborate search expressions based on tags (any number of 
tags can be added to the model during registration). ML model activation is implemented by leveraging existing 
deployment support, which involves submitting a special/custom application description linked to a suitably 
prepared container, and then following the usual deployment path. Once an ML model has been activated, an 
endpoint is returned, allowing it to be invoked by the agent that requested the activation. The ML Connector 
can be dynamically configured to provide an explanation for each inference made. Even when this is disabled, 
the MLConnector still saves explanations for every inference call made, so that these can be retrieved/played 
back at a later point in time. Furthermore, the MLConnector can be configured to perform model retraining 
automatically when large drifts are detected, or it can be triggered manually. Note that a model can be updated 
at runtime in a transparent way without invalidating the endpoint used to invoke it. Finally, when the client 
agent no longer wishes to use the ML model, it requests that it be deactivated, leading to the deallocation of the 
respective system resources.   

2.2.9 Flexible Exploitation of Accelerators for Compute-intensive Operations 

The flexible and transparent exploitation of the various types of accelerators available on a node is achieved 
through the vAccel framework. Application components that perform heavyweight processing operations can 
abstract those in the form of function calls. Instead of statically linking these calls to a fixed implementation, 
this is decided at runtime based on corresponding configuration settings. Depending on the type of processing, 
the same function can have different implementations, e.g., for multi-core CPUs, GPUs, and FPGAs.   

2.2.10 Node-level settings 

It is possible to dynamically set the frequency of the node’s CPU/GPU. Higher frequency settings speed up 
computations at the cost of higher power consumption, while lower frequency settings slow down computations 
but also reduce the power consumption of the node. For Far-Edge nodes that communicate with the gateway 
over wireless, it is possible to switch between different transmission power levels, which is a major factor of 
energy consumption. 

2.3 Integration Status 

The integrated MLSysOps framework has been developed and tested through an intensive collaborative effort 
among various partners, who provided mechanisms, research testbeds, and nodes, enabling the validation of 
core system functionalities across a multitude of configurations. Table 1 provides an overview of the integration 
status for each of the above core functionalities, stating how each one was validated to confirm proper operation 
and any known limitations or issues. The table also lists the main partners responsible for developing each 
functionality and the testbeds (underlined partner names) used to confirm proper operation. 
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Table 1: Overview of general integration status. 

Functional 
Aspect Integration Status / Validation 

Limitations / 

Possible Extensions 
Testbeds Partners  

Application and 
system 
descriptions 

Successful parsing of application descriptions 
for different applications with multiple 
independently deployable components. 
Extensions to support adaptation knobs have 
been added, while introducing permitted 
actions that MLSysOps agents can take in the 
MLSysOps application and Node 
descriptions. 

No issues.  TB-R-5 
UTH, 

UNICAL 

Agent hierarchy 

Complete agent hierarchy working, 
supporting the deployment and monitoring of 
applications. The Continuum agent runs in a 
VM, cluster agents run in separate VMs, and 
node agents run on VMs and physical nodes 
(Intel workstation, Jetson, Raspberry Pi). 
Agents that handle resource-constrained Far-
Edge devices are co-hosted on available, 
more powerful nodes. Agent policies can be 
changed at runtime via the CLI. 

No issues.  
TB-R-5 
TB-R-7 

UTH, 
UNICAL, FhP 

Application 
deployment 

Successful deployment of an application with 
components running on a VM in a cluster, on 
a standalone Intel workstation, on different 
Smart-Edge nodes (RPi and Jetson), and on 
Far-Edge nodes (Kallisto). 

No issues. 
TB-R-5 
TB-R-6 
TB-R-7 

UTH, NUBIS, 
FhP 

Application 
component 
versions and 
execution 
enclaves 

Successful deployment of an application 
component (image capture) with different 
versions targeting a powerful standalone node 
(Intel workstation) and a Smart-Edge node 
(RPi). Successful deployment of an 
application component (OpenCV Optical 
Flow processing) as a plain container and as a 
sandboxed container in a micro VM, taking 
advantage of hardware acceleration 
functionality through vAccel.   

No issues. TB-R-6 NUBIS, UTH  

Relocation of 
application 
components 

Successful relocation of application 
components within and across different 
clusters, between powerful nodes (VMs, 
workstations), Smart-Edge nodes (RPi, 
Jetson, ZCU102 FPGA SoC), and Far-Edge 
nodes (Kallisto). 

No issues. 
TB-R-5 
TB-R-6 
TB-R-7 

UTH, NUBIS, 
FhP 

Application-
level 
communication 
and traffic 
redirection 

Successful communication between 
components over the default path (used for 
the control plane). Successful application 
traffic redirection between different network 
interfaces (Ethernet, 4G, Wi-Fi).  

Very frequent 
component relocation 
may disrupt 
communication, as it 
requires Kubernetes to 
update service routing 
internally. There may 
also be 
minor/temporary 

TB-R-5 
TB-R-6 
TB-R-7 

UTH, NUBIS, 
FhP 
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Functional 
Aspect 

Integration Status / Validation 
Limitations / 

Possible Extensions 
Testbeds Partners  

disruptions in the 
event of traffic 
redirection. Cross-
cluster communication 
between application 
components is 
supported via 
Karmada/Submariner 
but requires extensive 
manual configuration. 
 
Application 
components on Far-
Edge nodes 
communicate with 
other components via 
MQTT. Another 
option would be to 
support 
communication via 
COAP. 

Telemetry 

Complete pipeline working for the Far-Edge, 
Smart-Edge, cluster, and continuum level. 
Successful generation, reception, and 
propagation of system-level telemetry 
information. Successful generation (through 
the MLSysOps telemetry API), reception, and 
propagation of application-level telemetry. 
Agents can flexibly configure, also at 
runtime, the telemetry they wish to consume. 

No issues. 
TB-R-5 
TB-R-6 
TB-R-7 

UTH, NUBIS, 
FhP 

ML model 
storage, 
discovery, 
activation, 
invocation, 
deactivation, 
and retraining 

Successful discovery, activation (via the 
standard deployment path), invocation, and 
deactivation by agents via the MLConnector 
API. ML models can be deployed both 
locally (on the same node as the requesting 
agent) and remotely (on a node selected by 
MLSysOps). Drift detection and retraining 
are transparently performed via the 
MLConnector without invalidating the 
invocation endpoint. The images for the ML 
models are stored using the CC storage 
service. 

No issues.                                                  TB-R-5 
UCD, CC, 

UTH 

Flexible 
exploitation of 
accelerators for 
compute-
intensive 
operations 

Implementations of image processing 
functions for multi-core CPU, GPU, and 
FPGA. Successful runtime selection of 
function implementation on two nodes (Intel 
workstation, Jetson, ZCU102 FPGA SoC).  

The desired vAccel 
plugins (daemon sets) 
must be pre-installed 
on the nodes that will 
host application 
components, 
depending on the 

TB-R-5 
TB-R-6 

NUBIS, UTH 
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Functional 
Aspect 

Integration Status / Validation 
Limitations / 

Possible Extensions 
Testbeds Partners  

node's hardware 
(accelerator type, 
framework type, etc.). 
This is part of the 
infrastructure/framew
ork configuration 
process and must be 
completed before 
running applications. 
This is currently done 
manually, but it could 
be automated by 
extending the 
framework 
deployment 
descriptions/instructio
ns. 

Node CPU/GPU 
frequency 
setting 

Successfully set CPU/GPU frequency on 
different physical nodes (Intel workstation, 
Jetson, RPi). 

No issues. TB-R-5 
TB-R-6 

UTH, NUBIS 

Node 
transmission 
power setting 

Successfully set the transmission power for 
the Wi-Fi radio on Kallisto nodes. No issues. TB-R-7 FhP 

Node trust level 
adaptation 

ML-based mechanism monitors 
CPU/memory resource usage, detects 
abnormal behaviour, and updates the trust 
level of the node, which is communicated to 
the cluster level via telemetry.    

Supported/tested on 
RPi nodes, but could 
be ported to other 
platforms. 

TB-R-5 
TB-R-8 

TUD, UTH 

Storage gateway 
deployment 

The gateway component to the CC storage 
service can be deployed and managed as a 
regular application component. The 
requirement to deploy the gateway before the 
components that will use it can be captured in 
the corresponding MLSysOps application 
description. 

It is possible to deploy 
a single gateway that 
is accessible by 
different applications, 
but in this case, the 
deployment 
dependency must be 
ensured manually.  

TB-R-5 CC, UTH 

Overall, a wide range of functional aspects/mechanisms developed in the MLSysOps project are successfully 
integrated into the framework and work smoothly/robustly for different application components and 
combinations of physical nodes. Specific functionalities still have some limitations, mainly because the 
respective issues were not a high priority for the project and the application use cases. Given that the MLSysOps 
framework is open source, these limitations can be investigated and resolved by future contributors.  

 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        23 

3 Use-case Specific Integration 
This section provides the integration status for each of the MLSysOps project's two application use cases. First, 
we explain the process for supporting each use case using a suitably adapted instance of the MLSysOps 
framework. Then, we discuss the status of each use case separately.  

3.1 Application-driven Framework Adaptation/Integration/Testing 

The MLSysOps framework is designed to capture a wide range of system and application management 
scenarios. However, a given use case may not require all the framework's functionalities. Some functionalities 
may not be applicable due to constraints on the physical nodes, restrictions on accessing the system 
infrastructure, and the degree to which MLSysOps is allowed to perform system-level configuration.    

The adaptation/configuration, integration, and testing of the MLSysOps framework for a given use case follows 
a structured approach, illustrated in Figure 2. 

 

Figure 2: Approach and integration of the MLSysOps framework to a specific application use case. 

The process consists of different tasks/activities taking place in three contexts with a focus on (i) the application, 
(ii) the framework, and (iii) the ML models. Note that most activities are loosely coupled and can run in parallel 
to a significant degree. Next, we briefly describe each activity following the enumeration in Figure 2. 

1. Define the application use case, the nodes involved, the application components, the management 
responsibility of the MLSysOps framework, and the functionalities required to achieve this. At this 
stage, also define the application-level performance metrics (if any) and the respective “satisfaction” 
thresholds.  

2. Decide the hierarchical structure for managing the system and configure the agents at each layer to use 
the required telemetry and mechanisms. At this stage, where ML models may not be available or 
sufficiently trained, decisions are taken using simple/conventional rules and heuristics. This makes it 
possible to anticipate the resulting behaviour. It is important to detect issues/bugs in the underlying 
mechanisms or the conceptual control loop before attempting to employ ML and real nodes in the 

1. Define  application  concept  &  desired management/configuration   functionality 

4. Develop/adapt  
application  

components 

2. Define  the system hierarchy,  
configure agents to use the  

required functionality 

5. Collect data for ML 
& 

develop/train ML models 

7. Integrate/test with physical nodes & testbed with ML 

ML Application Framework 

3. Test in research testbed  
with proxy components &  

virtual nodes 

6. Integrate/test with physical nodes & testbed 
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application testbeds. Note that these conventional heuristics also serve as a fall-back option in case an 
ML-based operation is decided to stop.  

3. The resulting framework is tested in a research testbed using proxy application components and virtual 
nodes. This enables the systematic testing of the basic application management loop, including the 
corresponding control and telemetry flows, early on without requiring access to the physical nodes or 
the target testbed, not even to the real components of the application that will run in the testbed.  

4. Develop/adapt the application components so that they can be deployed and orchestrated by the 
MLSysOps framework. The application components must also be programmed to emit the specified 
performance metrics. 

5. Collect data to design and train the ML models that will drive system/application management. This is 
done, in part, in parallel to the development of the application components 

6. Integrate and test the MLSysOps framework using the nodes of the physical testbed. At this stage, one 
confirms the basic management loop, as outlined in #3. However, this is done using the real application 
components and the real nodes of the application testbed. Note that no ML models need to be used at 
this stage. ML-driven policies should be applied only once basic management works robustly, based 
on simple/conventional rules/heuristics that result in predictable behaviour. 

7. The developed ML models are plugged into the MLSysOps framework so that they can be used by the 
MLSysOps agents to make management/configuration decisions (vs. using the simple/conventional 
rules and heuristics of #3). The basic management logic of #3 is maintained as a fallback whenever the 
system is commanded to pause ML-based operation.      

In the next sections, we explain how the framework was configured for the smart city and smart agriculture 
application use cases, present the corresponding data collection, ML development, and evaluation, and discuss 
the aspect of scalability for each use case. 

3.2 Smart City Application 

With respect to the framework adaptation/configuration and integration approach shown in Figure 2. In the 
second year of the project, the smart city use-case completed tasks #1, #2, and #3. In the third year of the project, 
work was done on tasks #4, #5, #6, and #7. In the following, we provide a summary of the application concept, 
explain how the MLSysOps framework supports the desired system/application management, discuss the 
development/integration work for this use case, and present the evaluation results.  

3.2.1 Concept, Role of MLSysOps, Application KPI & System Optimization Objective  

The goal of the smart city application use case is to improve the energy efficiency of smart lampposts, which 
are equipped with cameras and run image processing software. The application's objective is to detect/count 
people and cars passing by, as well as potentially identify problematic situations/incidents, and send this 
information to the city's datacentre or private cloud. Ultimately, this information can be used for various 
purposes, including producing traffic statistics, detecting dangerous driving behaviours, alerting authorities to 
hazardous situations such as vehicle collisions, and decreasing the response time for first responders, including 
emergency personnel and police forces, to road accidents (potentially saving lives). 

The role of MLSysOps is to reduce the power consumption of the smart lampposts by completely deactivating 
image processing during periods when no detections occur. However, there is an inherent trade-off between 
energy saving and the detection accuracy/performance of the application. The longer the image processing 
remains fully deactivated, the more energy is saved; however, the likelihood of missing events of interest 
increases.  
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To reduce the probability of missed events during the periods when image processing is deactivated, the 
lamppost setup is augmented with the addition of a noise sensor. The assumption is that people/cars will create 
some noise that can be detected before they pass in front of the camera, which can serve as a trigger to re-
activate image processing in time for the respective event to be detected. In other words, the noise levels are 
used as a hint that object detections are likely to occur soon. Since the activation of the image processing 
pipeline/component may take some time to start working properly, it is essential to be able to predict the noise 
level based on previous measurements to trigger image processing ideally in advance.   

The detection performance of the smart lamppost is captured through suitable application-level metrics with 
specific satisfaction thresholds, as declared in the corresponding application description. At runtime, the 
application reports the current noise level, noise events, and image processing detections by emitting the 
respective values via telemetry, allowing this information to be consumed by the MLSysOps agent(s). From the 
high-level application perspective, the KPI is to keep the number of lost detections due to the deactivation of 
the image processing component below 5%. From a system perspective, the KPI is to minimize the energy spent 
by the lamppost while meeting the application-level target, which is a low number of lost detections. 

3.2.2 Application Structure  

The application consists of three components: (i) the noise processing component, (ii) the image processing 
component, and (iii) the telemetry/event forwarder. The first component accesses the noise sensor and emits the 
respective readings along with noise events that imply objects passing by in front of the camera with high 
probability. The second component processes images from the camera to detect objects/incidents and emits 
respective detection events. The third component receives and stores information generated from both 
components, allowing it to be used for further analysis, such as producing traffic statistics for a specific street, 
area, or entire city. It also utilizes the noise and detection events generated by the other two components to 
calculate a metric for the estimated lost detections resulting from inactive image processing. Finally, it forwards 
all metrics to MLSysOps telemetry, allowing them to be consumed by the agent. To focus on the essence of the 
use case, only the image processing component is managed by MLSysOps; the other two components are 
assumed to be pre-deployed on the node.  

MLSysOpsApplication: 
  name: ubiwhere-app 
  cluster_placement: 
    cluster_id:  
    - "UTH-UBIW1" 
  components:  
    - metadata: 
      name: noise-detection-app 
      external_component: True 
      restart_policy: OnFailure 
      containers: 
        - image: UBIW_noise_detection_app:latest 
          image_pull_policy: IfNotPresent 
      qos_metrics: 
        - application_metric_id: NoiseEvents 
    - metadata: 
      name: object-detection-app 
      restart_policy: OnFailure 
      containers: 
        - image: UBIW_object_detection_app:latest 
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          image_pull_policy: IfNotPresent 
      qos_metrics: 
        - application_metric_id: DetectionEvents 
 - metadata: 
      name: forwarder-app 
      external_component: True 
      restart_policy: OnFailure 
      containers: 
        - image: UBIW_forwarder_app:latest 
          image_pull_policy: IfNotPresent 
      qos_metrics: 
        - application_metric_id: EstimatedLostDetections 
          target: 5 
          relation: lower_or_equal 
 global_satisfaction: 
     threshold: 0.9  
     relation: greater_or_equal 
     achievement_weights: 
     - metric_id: EstimatedLostDetections 
       weight: 1  

Figure 3: MLSysOps application description for the smart city use case. 

 

The core deployment description for this application based on the MLSysOps format is shown in Figure 3. For 
the sake of the example, we assume the application should be deployed in a specific cluster, representing a target 
area, e.g., the real-world testbed of UBIW in Aveiro. The placement requirement for the image processing 
component that is managed via MLSysOps is specified through corresponding node labels and/or continuum 
layer filtering options (it must reside on the same node as the noise component), which are matched with the 
respective cluster/node properties (defined in the system infrastructure description). As mentioned above, the 
noise and image processing components generate respective “NoiseEvents” and “DetectionEvents”. Based on 
this information, the forwarder generates the “EstimatedLostDetections” metric with the respective target value 
being less than or equal to 5 (out of 100), which exclusively contributes to the global satisfaction level. Note, 
however, that this metric is merely an approximation for the detections lost due to image processing being 
inactive, assuming each noise event corresponds to a detection event. While this estimation can be inaccurate, 
it serves as a rough proxy for the golden truth (i.e., how many detections would have occurred if image 
processing were active), which is unknown to the application or system at runtime.     

3.2.3 Development of Application Components 

Image processing. The image processing component gathers the video stream from a camera via an RTSP 
endpoint. Then, it feeds the camera frames to a YOLO computer vision algorithm that detects cars, people, and 
other objects commonly found on the streets. While this was initially thought to be deployed via Docker, it was 
decided to alter the approach and deploy the application using Kubernetes with a Helm chart. A few 
considerations were also made due to the CPU architecture of the edge nodes (Nvidia Jetsons) and the support 
of CUDA, enabling these edge nodes to perform to the best of their ability. This resulted in a few changes to 
support the Arm CPU architecture and a proper Docker base image that enables the Jetsons iGPU to process the 
image. Crucially, the component now includes a detection delta logic: instead of simply broadcasting raw 
counters, it calculates the incremental change in detected objects between frames (e.g., car_delta, moto_delta). 
This processed metadata is pushed to the local MQTT broker and subsequently forwarded to 
the MLSysOps telemetry pipeline. 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        27 

Sound processing. The sound processing component interfaces directly with the ESP32 noise sensor, which is 
hosted within the smart lamppost. Beyond simply reading raw data, this component has been enhanced to 
perform local pre-processing: it analyses the audio stream to identify potential Noise Events—acoustic 
signatures that exceed the dynamic background threshold. These derived events, along with the raw noise levels, 
are broadcast via MQTT, serving as the primary trigger signal for the MLSysOps prediction logic.  

Event collector. A dedicated telemetry forwarding component bridges the gap between the edge sensing layer 
and the MLSysOps framework. This component subscribes to the local MQTT topics populated by the Image 
and Sound processing units, aggregating the asynchronous data streams. Its primary function is to normalize 
these heterogeneous inputs into a standardized format and forward the synchronized metrics—including 
Detection Deltas and Noise Events—directly to the MLSysOps observability stack via OpenTelemetry (OTEL). 
By decoupling the core sensing logic from the telemetry transmission, this component ensures robust data 
buffering and enables the generation of high-level composite metrics required for system evaluation.  

3.2.4 Framework Instantiation and Agent Logic 

The smart lamppost node is part of a cluster where the application is deployed. Many such nodes can be managed 
within the same cluster or multiple clusters for different areas of the city. A continuum-level agent manages the 
system slice assigned to MLSysOps, while a corresponding cluster agent manages each cluster within that slice. 
Finally, each node runs a node-level agent.  

Each smart lamppost is assumed to operate independently, so we focus on controlling a single lamppost within 
a cluster. More advanced scenarios for coordinated resource sharing among multiple smart lampposts could be 
explored in a subsequent phase. Figure 4 illustrates the system setup, core framework components, and 
application deployment on the lamppost node.  

 

Figure 4: MLSysOps framework for the smart city use case. 

System/application management is distributed between the node and cluster levels. The node agent retrieves 
information generated by the noise and image processing components from telemetry and uses this information 
to predict the presence of noise levels and detection events for the next few minutes. The prediction, along with 
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a hint to activate/deactivate image processing, is propagated to the cluster level through telemetry. The cluster 
agent monitors the state of the nodes and the prediction of detection events and activation/deactivation hint, and 
it uses this information to control the activation and deactivation of the image-processing component on the 
lamppost. 

 

Figure 5: FSM used by the cluster MLSysOps agent to control the deactivation/reactivation of the image 
processing component. 

The cluster agent makes decisions based on a finite-state machine (FSM), as shown in Figure 5. In summary, 
the image processing component is deactivated when no detection events occur, and it is also predicted that this 
will not be the case in the near future, and an activation timeout expires; the role of the timeout is to keep image 
processing active despite the predicted absence of noise and image processing detection events, thereby avoiding 
frequent oscillations between deactivation and activation. Image processing is reactivated when it is predicted 
to lead to detection events. 

For simplicity, the above FSM assumes that the lamppost node is available. The actual (implemented) FSM is 
more complex, handling the case where the lamppost becomes available after being temporarily unavailable. In 
this scenario, both the sound processing component and the image processing component are deployed to 
establish the default configuration.  

3.2.5 Integration and Testing  

3.2.5.1 Using Virtual Nodes  

The above system setup was initially tested using UTH's research testbed. Instead of the real smart lamppost 
node, we use a virtual machine (VM) running in the UTH cluster. Using this setup, exhaustive tests were 
conducted to verify the correct operation of all control/telemetry flows, the agent logic, and the functionality of 
the deployment mechanisms of the MLSysOps framework. Since we want to stress test the MLSysOps 
framework, instead of using the real application components of UBIW, we use proxy components that emit 
similar metrics. These components are programmed to generate these metrics in a controlled manner, triggering 
the deactivation and reactivation of image processing according to the desired test scenarios. Thanks to this 
setup, numerous tests were performed to verify the robustness of MLSysOps software before trying to use it 
with the real smart lampposts.  
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Notably, this setup can be used in conjunction with the smart lamppost node(s) of the real-world testbed to 
explore scenarios and evaluate system-level functionality across multiple nodes. However, large-scale 
evaluation scenarios involving many nodes will have to be conducted using simulations.  

3.2.5.2 Using Physical Nodes 

Tests using physical nodes were constructed using two clusters of worker nodes: cluster 1, encompassing the 
nodes installed at UBIW Headquarters, and cluster 2, comprising physical nodes that capture information in a 
public setting in the city of Aveiro. 

Private Testbed (Cluster 1) 

  

(a) (b) 

Figure 6: (a) Satellite view of UBIW testbed, and (b) Smart lamppost, Node #0. #1 and #2 

This testbed features three smart lampposts, indicated by the yellow pins (#0, #1, and #2) in Figure 6 (a). These 
lampposts are placed at the boundary of UBIW’s private parking area. They run the application software to 
detect and count mobility-related events, such as the number of cars, motorcycles, bicycles, and people 
entering/leaving the parking lot. This environment represents a controlled "low-noise" scenario ideal for 
calibrating energy-saving logic. 

All nodes are capturing real street footage. Basic functionality has been validated based on (i) successful 
deployment and dynamic management according to Kubernetes status information and MLSysOps agent 
decisions, (ii) application-level information collected via telemetry (observing detection counters and noise 
level patterns, verifying their behaviour aligns with expected patterns), and (iii) system-level metrics collected 
via telemetry (monitoring CPU, GPU, and memory usage across operational cycles). 

 

Public Testbed (Cluster 2)  

The second testbed extends the evaluation to a live urban environment. It comprises two edge nodes (Nodes #3 
and #4) deployed in the city of Aveiro. Unlike the private cluster, these nodes monitor a public street with 
continuous vehicular and pedestrian traffic. The sensors here are mounted at a higher elevation, creating a 
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"continuous-noise, high-density" scenario. This setup is critical for stress-testing the system's logic and 
validating the adaptive normalization algorithms against the constant acoustic hum of the city. 

All nodes are capturing real street footage. Basic functionality has been validated based on (i) successful 
deployment and dynamic management according to Kubernetes status information and MLSysOps agent 
decisions, (ii) application-level information collected via telemetry (observing detection counters and noise 
level patterns, verifying their behaviour aligns with expected patterns), and (iii) system-level metrics collected 
via telemetry (monitoring CPU, GPU, and memory usage across operational cycles). 

Hardware Integration 

All smart lampposts across both testbeds are equipped with identical MLSysOps-ready hardware. To this end, 
additional equipment was acquired in 2024 and subsequently configured before being mounted. Figure 7 shows 
the test setup used for the Smart-Edge node in the lab before installation. 

 

 

  
Figure 7: Housing and lab setup for the Smart-Edge node before it is mounted on the lamppost. 

The basic hardware (HW) parts of the Smart-Edge node are listed in Table 2. All the smart nodes have similar 
configurations. It is essential to note that the node setup is extensible, allowing for the inclusion of additional 
peripherals. 

 

Table 2: Main HW parts of the smart lamppost node in the UBIW testbed. 

Equipment type Hardware 

Video Camera Hikvision h.265+ EXIR VF Bullet Network Camera 

Compute Unit Nvidia Jetson Orin AGX 32GB or 64GB 

Noise Sensor ESP32 & Grove LM2904 

Switch Comparta CPGU-0500 or Teltonika TSW200 
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Smart Relay  Shelly Pro 2 PM 

Power Supply Mean Well RD-125-4812 

Infrastructure 

The Smart-Edge nodes on the lampposts are connected to a K3S cluster, which, in turn is connected to a system 
slice managed by Karmada. The system slice is managed both at the continuum level and the cluster level by 
MLSysOps. The cluster is configured to manage a mixed infrastructure consisting of physical Smart-Edge nodes 
and several virtual machines (VMs) hosted in Proxmox (virtualization platform) within the Barrocas datacentre 
(private UBIW datacentre). 

This architecture was deliberately designed to create a secure abstraction layer between the physical 
infrastructure and the MLSysOps framework. Specifically, the setup instantiates a Virtual Machine (VM) for 
each physical smart lamppost node. These VMs function as exact Digital Twins of the physical hardware within 
the secure DMZ environment. The communication pipeline is established as follows: 

1. Real-Time Telemetry: The physical nodes continuously transmit real-world sensor data (noise levels, 
video metadata, power consumption) to their corresponding VMs via a secure MQTT bridge. 

2. Proxy Execution: The MLSysOps framework and agents are deployed on these VMs. They process the 
incoming telemetry as if they were running directly on the edge device. 

3. Control Propagation: Decisions made by the MLSysOps agents (such as deactivating the image 
processing application) are propagated back to the physical node for execution. 

Critically, this configuration protects UBIW's core physical infrastructure from experimental software updates 
while enabling comprehensive testing and deployment of MLSysOps without operational barriers. By isolating 
the MLSysOps-managed system slice, the framework can operate in a production environment with real 
physical nodes without compromising existing services. Because the VMs receive the exact live telemetry 
stream with negligible latency, the input data for the ML models and the system state monitored by the agents 
are identical to what would be observed in a direct deployment. The testbed effectively operates as a high-
fidelity Digital Twin, ensuring that all observed node metrics, energy savings, and detection rates are 
representative of real-world performance. 

Currently, all physical nodes are fully functional and transmitting telemetry data to the designated VMs. At each 
VM worker node, an MLSysOps agent runs locally, retrieving system and application metrics through a suitably 
configured telemetry pipeline. These node-level agents collect comprehensive data, including detection events 
from the computer vision components and noise levels from the sound sensors. The agents process this 
information locally and forward relevant telemetry to the cluster-level MLSysOps agent, which aggregates data 
from all nodes and uses it to make informed management decisions. Notably, MLSysOps now controls the 
activation and deactivation of the image processing components on the nodes, dynamically managing their 
operation based on the prediction of detection events (informed by both visual detections and noise patterns) 
and system performance metrics. 

3.2.6 Data Collection  

The data collected using the above setup via telemetry includes system-level metrics (GPU load, CPU load, 
memory usage) and application-level metrics (inference speed, tracking speed, number and type of detections). 
Table 3 gives an overview of the collected data. 
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Table 3: Data/metrics collected for MLSysOps in the smart city use case. 

Source Metric Unit Description 

System 

CPU Load Percentage (%) Instant CPU usage. 

GPU Load Percentage (%) Instant GPU usage. 

Memory Usage Percentage (%) Instant memory usage. 

Application 

Inference Speed Milliseconds (ms) 
The time it takes for the application to process one 
frame and detect objects. 

Tracking Speed Milliseconds (ms) 
The time it takes for the application to track the 
detected objects within a frame (vs previous 
frames). 

Detection Event class (string); count (integer) The application detected a new event. 

Sensor Noise Relative Intensity (0-100) Ambient sound intensity 

3.2.7 Machine Learning Training and Evaluation 

Considering the need to predict the need for running the activity detection model, which, by itself, requires time 
to initialise and process the input frames and detect activity, we introduce the use of a Long Short-Term Memory 
(LSTM) network. The fundamental motivation for using an LSTM network comes from the challenge of 
processing sequential data where the context needed to make a correct prediction is separated by a significant 
gap in time.  

This model is designed to forecast future noise levels by analysing a single stream of past noise measurements. 
It processes one noise reading at a time using an architecture built from three stacked layers, which allows the 
system to capture both immediate fluctuations and longer-term noise trends. Internally, the model expands the 
single input into sixteen distinct features, giving it the capacity to recognize complex sound patterns. To ensure 
the system remains robust and does not merely memorize the training data, it randomly ignores twenty percent 
of its internal connections during the learning process. Finally, it condenses this memory down to a single value 
representing the predicted noise intensity. 

We complement the designed LSTM model that is developed to predict future noise values with conditional 
logic. Specifically, we compare the average noise value of the input window (noise values from the past 
timestamps fed into the model) and the output window (predicted noise values of some future timestamps 
returned by the model), and check if the difference crosses a predefined threshold. If we register such a 
significant change, we consider it equivalent to a detection. In terms of evaluation, if our LSTM model can 
correctly predict a sustained change in noise levels for future timestamps, we consider it a success. In our 
assessment, as depicted in Figure 8 below, the model successfully predicted up to 88% of the detections for 
threshold values as low as 0.01, and the accuracy was 99% for values as high as 0.1. 
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Figure 8: Accuracy of the developed noise forecasting system as a function of the threshold used at the 

computational part of the system 

3.2.8 Evaluation 

3.2.8.1 Results and KPI measurements 

To evaluate the efficacy of the MLSysOps framework in the smart city domain, we analysed the system's 
performance across different deployment environments and temporal windows. Specifically, we compared the 
energy profile and detection accuracy of the smart lampposts under three distinct management strategies. The 
results presented below are derived from real-world telemetry collected from Cluster 1 (Nodes #0, #1, #2 at 
UBIW Headquarters/Parking) and Cluster 2 (Nodes #3, #4 in public settings in Aveiro). 

To establish a basis for the coherent evaluation of the trade-off between sustainability and service quality, the 
following metrics were defined: 

• Energy Consumption (kW): The cumulative energy used by the edge node. 
• Energy Savings (%): The percentage reduction in energy consumption compared to the baseline 

"Always-On" configuration. 
• Capture Rate (%): The ratio of vehicle detections (Car, Moto, Truck, Bus, Bike) successfully recorded 

by the system, relative to the ground truth (Captured Detections vs Real Detections). 
• High-Level KPI: The primary objective is to maintain a capture rate above 95% (accepting less than 

5% lost detections) while maximizing energy savings. 

CV Component Activation Strategies 

1. Always-On (Baseline): The image processing application component runs continuously. This represents 
the reference point for calculating savings and establishes the theoretical maximum for Capture Rate 
(100%). Ground truth was obtained by running video streams in parallel, in-house applications, during 
the test period. 

2. Heuristic-based Engagement: Decision-making is based on a static Simple Moving Average (SMA) 
threshold. 

3. ML-based Engagement (MLSysOps): Utilizes the LSTM-based Variation model to predict activity.  

Crucially, both strategy 2 and 3 incorporate Hysteresis Logic via a Minimum Runtime Timer. Once activated, 
the CV component is forced to remain "ON" for a minimum of 10 minutes during the day and 5 minutes at 
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night. This ensures the system protects hardware from high-frequency oscillation and ensures detection 
continuity. 

Adaptive Normalization for Installation Variance  

A major challenge in scaling IoT deployments is the variability in physical installation conditions. Noise sensors 
mounted on standard streetlights (8–12 meters high) register significantly lower sound pressure levels due to 
signal attenuation compared to sensors mounted on lower infrastructure. Consequently, a fixed activation 
threshold is non-viable. 

To address this, the MLSysOps framework implements an Adaptive Normalization layer. The system 
dynamically calculates the operational noise range for each node, defining the upper bound as the 99th Percentile 
(P99) of its historical profile. This normalizes the data based on relative variation rather than absolute volume. 
Whether a passing vehicle generates a 40dB spike (low altitude) or a subtle 5dB ripple (high altitude), the 
normalization maps both events to the same [0, 1] input feature space. This allows the single pre-trained LSTM 
model to generalize across heterogeneous physical deployments without site-specific recalibration. 

Threshold Sensitivity Analysis  

To identify the optimal operating point, a systematic sensitivity analysis was performed to identify the activation 
threshold that maximizes Energy Savings while strictly adhering to the 95% Capture Rate KPI. 

 
Figure 9: Sensitivity Analysis & Threshold Optimization Plot 

As illustrated in Figure 9, the analysis yielded the following observations: 

1. Robustness Region: For the private cluster, the system maintains a 100% Capture Rate up to a threshold 
of 0.175, indicating high model confidence in distinct traffic signatures. 

2. The Safety Limit: Beyond a threshold of 0.23, the Capture Rate drops sharply below the 95% threshold, 
defining the upper limit of safe operation. 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        35 

3. Public Independence: The public cluster shows minimal sensitivity to the threshold value. Due to high 
traffic frequency and the 10-minute hysteresis logic, the system effectively operates in a stable "Always-
On" state during active hours, while maintaining high capture rates on less active times, regardless of 
the sensitivity setting. 

Based on this analysis (summarized in Table 4), a global threshold of 0.20 was selected. This aggressive 
operating point provides a ~15.8% improvement in energy savings for private nodes (compared to 10.3% at 
0.15) while still maintaining a safe 98.8% Capture Rate, comfortably exceeding the safety KPI. 

Table 4: Sensitivity Analysis Data Table 

Threshold Deployment Capture Rate (%) Energy Savings (%) Safety KPI 

0,05 Private (Parking) 100 0,4 PASS 

0,05 Public (City) 100 0,1 PASS 

0,075 Private (Parking) 100 2,2 PASS 

0,075 Public (City) 100 0,1 PASS 

0,1 Private (Parking) 100 4 PASS 

0,1 Public (City) 99,8 0,5 PASS 

0,125 Private (Parking) 100 6,6 PASS 

0,125 Public (City) 99,8 0,8 PASS 

0,15 Private (Parking) 100 10,3 PASS 

0,15 Public (City) 99,8 0,8 PASS 

0,175 Private (Parking) 100 13,7 PASS 

0,175 Public (City) 99,8 0,8 PASS 

0,2 Private (Parking) 98,8 15,8 PASS 

0,2 Public (City) 99,8 0,8 PASS 

0,225 Private (Parking) 93,8 19,2 FAIL 

0,225 Public (City) 99,8 0,8 PASS 

0,25 Private (Parking) 92,5 21,3 FAIL 

0,25 Public (City) 99,8 0,8 PASS 

 

Overall Operational Performance 

The deployment of the MLSysOps framework was monitored continuously from December 19, 2025, to January 
5, 2026. Table 5 summarizes the key operational metrics across all monitored nodes, contrasting the high-
efficiency profile of private infrastructure (Nodes 0–2) with the high-availability profile of public infrastructure 
(Nodes 3–4). 

Table 5: Overall Operational performance 

Node Savings Min Savings Max Savings Avg Capture Min Capture Max Capture Avg 

node0 13,93% 27,86% 21,31% 42,86% 100% 80,99% 

node1 3,48% 25,43% 13,11% 0% 100% 86,21% 
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node2 11,14% 40% 22,80% 16,67% 100% 71,12% 

node3 0,79% 6,59% 2,83% 98,19% 99,76% 99,03% 

node4 0,21% 7,22% 4,15% 98,09% 100% 99,06% 

      Note: Node 1’s 0% capture on Dec 30 was an edge case involving a single vehicle event 

The operational dataset confirms the system's dual-mode efficacy: 

• High-Efficiency Mode (Private Nodes): In controlled environments, the system delivers double-digit 
energy savings (averaging ~19%), peaking at the theoretical hardware limit of 40% on quiet days 

• High-Availability Mode (Public Nodes): In chaotic environments, savings are deprioritized (averaging 
~3.5%) to maintain a capture rate consistently above 99%, validating the safety-first logic of the 
MLSysOps framework 

Operational Performance: Cluster 1 (Private/Parking) 

The deployment of the MLSysOps framework was monitored continuously from December 19, 2025, to January 
5, 2026. The data reveals a distinct trade-off profile for the private parking area, characterized by sparse, 
irregular activity: 

• Energy Efficiency: The ML strategy achieved substantial savings, averaging ~19% across the cluster 
and peaking at the theoretical hardware maximum of 40% on days with zero traffic (e.g., weekends). 

• Detection Integrity: While the system frequently achieved 100% capture on active days, the average 
capture rates (71%–86%) reflect the inherent challenge of "cold-start" detection in low-traffic 
environments. The lower minimums (e.g., 42% on Node 0) typically occurred on days with fewer than 
5 total events, where missing a single vehicle significantly impacts the daily percentage. This effect is 
likely exacerbated by low-noise vehicles (e.g., electric vehicles operating at low speeds, bicycles, etc.); 
without significant noise, these vehicles may fail to breach the activation threshold, constituting a 
known physical limitation of acoustic-only triggers. 
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Figure 10: Node #0 (Private Parking) – Dec 23, 2025 

Figure 10 clearly differentiates the three approaches taken. The Always-On strategy (top) captures everything 
but wastes significant power during the long idle gaps. The Heuristic strategy (middle) is unable to differentiate 
between a noisier background and the actual noise events that are due to detection events. The ML-based 
strategy (bottom), however, successfully identifies the event's "shape." It pre-activates the node to capture the 
full sequence (98.8% Capture Rate) and then powers down, achieving ~16% energy savings—effectively 
combining the reliability of the baseline with the efficiency of the heuristic.  

Visually, the dark markers indicate the ML Triggers—the specific points where the model identifies a noise 
variation and initiates a wake-up. The vertical green bands represent the resulting 'Active Mode' (system power-
on). The success of the strategy is visible in the overlap of the solid green line (Captured Detections) and the 
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dashed red line (Real Detections). When these two overlap, it confirms the system was active at the exact 
moment of the traffic event. Any red lines appearing without a green overlap would represent missed detections. 

A few ML triggers (dark markers) occur without subsequent detections because noise can spike from non-traffic 
sources. This causes the system to stay active briefly, leading to lower savings than theoretically possible but 
ensuring no real events are missed. 

 
Figure 11: Node #0 (Private Parking) – Dec 25, 2025 

Figure 11 highlights a failure mode for both power-saving strategies. The Heuristic strategy failed because 
several instances of no detection events crossed the static dB threshold. Similarly, the ML-based strategy 
interpreted the isolated event as background variation, failing to wake the node. Only the Always-On baseline 
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fully captured the events. This shows that for ultra-sparse traffic, with less than clear noise patterns, the energy 
vs. accuracy trade-off hits a hard limit where predictive models may not be ideal. 

Operational Performance: Cluster 2 (Public/City) 

The public deployment presents a distinct challenge: sensors are mounted at significant heights, resulting in 
attenuated noise readings (typically peaking below 20dB). The ML-based approach leverages Adaptive 
Normalization to compensate for this attenuation, successfully detecting traffic signatures even when the raw 
signal is weak. 

In this high-density environment (Figure 12), energy savings are minimal (averaging ~3.5%). This is a deliberate 
outcome of the operational stability logic. Because traffic events occur frequently, the 10-minute minimum 
runtime timer is constantly reset, effectively maintaining the CV component in a continuous 'Active' state. While 
this limits energy recovery, it validates the system's safety logic: the system correctly identifies the high-traffic 
context and defaults to a High-Availability Mode, ensuring the Capture Rate remains consistently above 99%. 
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Figure 12: Node #3 (City Centre) – Jan 03, 2026 

The ML-based strategy, utilizing adaptive normalization, correctly identifies that the traffic density requires 
continuous monitoring. It maintains a stable "Active" state similar to Always-On baseline, ensuring a 99.76% 
Capture Rate. The system effectively "decided" that attempting to save energy was not viable, defaulting to a 
high-availability mode. 

 

Temporal Analysis 
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A 72-hour continuous analysis overviews the system's adaptability to the city's pulse (Figure 13, Figure 14). 
During Deep Night hours (01:00–05:00) is the only time that the system can power down on the Public City 
Centre test. Lowest noise levels and traffic were reported at the 3:00 to 4:00 am time range.  

 
Figure 13: 72-Hour Continuous Analysis Plots of the private testbed 

 
Figure 14: 72-Hour Continuous Analysis Plots of the public testbed 

 

KPI Achievement Summary 

The deployment of the MLSysOps framework demonstrated that intelligent edge management can balance 
sustainability with safety. The system achieved the maximum theoretical energy reduction of 40% during 
periods of zero traffic (representing the total deactivation of the CV component). It maintained an average 
reduction of ~20% across the Private Parking cluster during active operational days. 

By combining predictive activation with stabilizing hysteresis timers and adaptive normalization, the system 
successfully met the 95% detection target in several of the tested environments, with focus on the public city 
testbed. 
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3.2.8.2 Portability, Generality & Scalability 

While the DMZ-based abstraction layer served as a robust environment for prototype validation, the production 
deployment of MLSysOps relies on direct management of the edge infrastructure. To assess the feasibility of a 
city-wide rollout, we analyse the scalability limits across two key dimensions: Computational Capacity (Edge) 
and Orchestration Capacity (Cluster). 

Computational Scalability (Edge Limits) 

The immediate constraint for scaling is the finite resources of the individual Edge Node. 

Inference Overhead: The additional load introduced by the MLSysOps local agents (LSTM noise prediction) is 
negligible. These models are lightweight and optimized for CPU execution, leaving the GPU entirely dedicated 
to the primary Computer Vision application. 

Resource Contention: Stress tests indicate that the Edge Node can support the MLSysOps monitoring stack 
alongside the heavy YOLO-based CV application without performance degradation. The node architecture 
allows for the vertical scaling of additional lightweight sensors (e.g., air quality, humidity) without requiring 
hardware upgrades. 

 Infrastructure & Orchestration Scalability (System Limits) 

Moving beyond the single node, the scalability of the central control plane (Cluster Agent and Karmada) 
becomes the defining factor. 

Telemetry Bottlenecks: As the fleet expands from tens to thousands of nodes, the volume of telemetry data 
(MQTT messages) increases linearly. The current architecture mitigates this by performing Edge-Side Filtering: 
nodes only transmit necessary detection metrics rather than raw streams, while the remaining telemetry is 
consumed directly on the node. This significantly reduces network bandwidth usage. 

Cluster Segmentation: The MLSysOps framework supports horizontal scalability through cluster federation. A 
single Cluster Agent can effectively manage hundreds of nodes before decision latency increases. For a city-
wide deployment involving thousands of smart lampposts, the infrastructure would be segmented into 
geographical clusters (e.g., one cluster per city district). 

Central Management: The Karmada control plane sits above these regional clusters, providing a unified policy 
view. This hierarchical design ensures that the system does not hit a hard limit on node count; instead, scalability 
becomes a function of adding additional regional aggregation points, allowing the network to grow indefinitely 
to cover entire metropolitan areas. 
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3.3 Smart Agriculture Application 

As illustrated in Figure 2, the smart agriculture use case followed a phased framework adaptation and integration 
approach. Year 2 focused on tasks #1 through #4, while Year 3 addressed tasks #5 through #7. Below, we 
provide a summary of the application concept, explain how the MLSysOps framework supports the desired 
system/application management, discuss the development/integration work for this use case, and present the 
evaluation results.  

3.3.1 Concept, Role of MLSysOps, Application KPI & System Optimization Objective  

The goal of the smart agriculture application use case is to improve the performance of targeted weed spraying 
in the field by complementing the camera system and embedded processing platform running on a tractor with 
a similar system that is installed onboard a drone that operates in tandem with the tractor. The basic assumption 
is that, in some cases, the vertical camera view of the drone system can lead to more robust weed detection vs 
the camera view of the tractor system, which may have issues due to flares and shadows, leading to improved 
weed detection system availability and consequently the targeted spraying of herbicides only when and where 
they are needed. 

The primary function of MLSysOps is to engage the drone when it is likely to enhance the tractor's weed 
detection performance significantly. Otherwise, the drone remains disengaged to conserve energy and battery 
life. There is a natural trade-off between improving weed detection and minimising energy consumption. 
Frequent or prolonged drone engagement may yield marginal improvements in weed detection, but at the cost 
of considerable energy usage, especially in large fields where continuous or repeated drone flights can limit area 
coverage, require mid-operation recharging, or risk disrupting the overall spraying operation. Additionally, 
deploying the drone requires substantial energy, including the time it takes to reach the tractor and begin 
assisting, as well as returning to its landing area after completing a mission. 

The performance of weed detection is captured through suitable application-level metrics with specific 
satisfaction thresholds, declared as part of the corresponding application description. At runtime, the application 
reports the current performance by emitting the respective values via telemetry so that this information can be 
consumed by the MLSysOps agent(s). From the application perspective, the KPI is to improve by 5% the amount 
of time where the system has satisfactory performance, defined as periods during which weed detection operates 
outside safe mode and produces reliable detection results above predefined confidence thresholds, due to the 
drone operating in tandem with the tractor vs the tractor alone. From the system perspective, the KPI is to 
minimise the energy spent by the drone (i.e., the flight time) while meeting the application-level target. 

3.3.2 Application Structure 

The application consists of four basic components: (i) the drone driver/controller, (ii) the weed detection 
component for the drone, (iii) the weed detection component for the tractor, and (iv) the controller for the sprayer 
on the tractor. For practical (but also safety) reasons, the drone controller is pre-deployed on the drone node. 
MLSysOps is responsible for the deployment/management of the two weed detection components and sending 
commands to the drone controller to engage/disengage the drone. Both weed detection components are similar 
in their image processing functionality but also have some differences. On the one hand, the drone component 
sends weed detection information to the tractor component. On the other hand, the tractor component receives 
the data generated by the drone component and is responsible for generating control commands for the sprayer 
controller. It also sends tractor position/speed information to the drone controller. Both weed detection 
components emit application performance metrics via telemetry. The drone controller component also emits 
state information via telemetry based on whether the drone is ready to operate, is following the tractor, or is 
returning to land (when explicitly disengaged or running out of battery). Finally, the sprayer controller 
component is pre-deployed on the tractor. It drives the hardware at the rear-end of the tractor to start/stop 
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spraying through one or more nozzles, depending on the commands received from the tractor component. Note 
that when the tractor component cannot detect weeds, it enters the so-called “safe mode” of operation, where it 
asks the sprayer component to spray herbicide in a “blind” way through all nozzles (default spraying mode). In 
this case, the engagement of the drone and the activation of the drone weed detection component can provide 
the tractor component with the necessary weed location information to continue in spot spraying mode. 

MLSysOpsApplication: 
 name: augmenta-app 
 cluster_placement: 
  cluster_id:  
   - "UTH-AUG1" 
 components:  
  - metadata: 
    name: tractor-app 
    node_placement: 
     labels: 
      - "node-type:tractor" 
    qos_metrics: 
     - application_metric_id: TractorWeedDetection 
       target: 50 
       relation: greater_than 
    restart_policy: OnFailure 
    containers: 
     - image: AUG_tractor_app:latest 
       image_pull_policy: IfNotPresent 
  - metadata: 
    name: drone-app 
    node_placement: 
     labels: 
      - "node-type:drone" 
    restart_policy: OnFailure 
    containers: 
     - image: AUG_drone_app:latest 
       image_pull_policy: IfNotPresent 
 global_satisfaction: 
  threshold: 0.9  
  relation: greater_or_equal 
  achievement_weights: 
   - metric_id: TractorWeedDetection 
     weight: 1 

Figure 15: MLSysOps application description for the smart agriculture use case. 

The core part of the deployment description for this application, based on the MLSysOps format, is shown in 
Figure 15. For the sake of the example, we assume the application should be deployed in a specific cluster, 
representing a certain system installation, e.g., the real-world testbed of AUG in Volos. The placement 
requirements for the two application components that are managed via MLSysOps are specified through 
corresponding node labels, which are to be matched with the respective node properties (specified in the system 
infrastructure description). The application performance metrics emitted by each component, along with the 
respective targets, are specified at the component level. More specifically, the tractor component emits a metric 
reflecting the local weed detection performance (TractorWeedDetection), with a target value greater than 50 
(out of 100) indicating satisfactory detection quality. The global satisfaction level of the application depends on 
whether the tractor weed detection target is met.  
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3.3.3 Development of Application Components 

Drone controller. The drone controller component has been fully developed and thoroughly tested using the 
drone simulation environment of UTH (see deliverable D4.3 “Final Version of System Simulators”) as well as 
on the real drone in the field. Several field tests have been conducted to confirm that the drone successfully 
performs the full operation cycle (arm, take-off, approach the tractor, follow the tractor, return to land, disarm) 
based on high-level commands issued to the drone controller from a remote computer in a manual way (terminal-
based commands). 

Tractor weed detection. The tractor weed detection component has been adjusted to (i) produce the desired 
application metrics, (ii) send telemetry information to the drone component (e.g., tractor location), and (iii) 
adjust the target rate of the sprayer control component based on the drone’s calculated weed locations if that is 
requested. 

Drone weed detection. The drone weed detection component has the same capabilities as the tractor detection 
component. Still, it has been modified to model how the drone moves so it can accurately determine the location 
of the detected weeds. It also integrates the capability to send the calculated weed locations to the tractor 
component. Note that this component does not interact with the sprayer controller component. 

Sprayer controller. The sprayer controller component is reused without any changes. It is the same version that 
is currently being used in the AUG tractor devices sold/installed worldwide. 

3.3.4 Framework Instantiation and Agent Logic 

The tractor and drone nodes are part of a cluster representing the field where the application is deployed and 
managed under the control of MLSysOps. There can be several clusters, each consisting of a tractor-drone pair 
running the same or different versions of the application, to support deployment and operation on different 
fields. A continuum-level agent manages the entire system slice. In turn, each cluster is managed by a 
corresponding controller/orchestrator agent. Finally, each node runs a node-level agent.  

Clusters are assumed to operate independently; hence, we focus on the control within a single cluster. Figure 16 
illustrates the system setup, the core framework components, and the application deployment when the drone is 
engaged, with both application components deployed on the respective nodes.  
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Figure 16: MLSysOps framework for the smart agriculture use case. 

The intelligence of system and application management is distributed between the node and the cluster level. 
The tractor node agent retrieves from telemetry the satisfaction/performance level of the local weed detection 
component, and it uses this information to predict the expected weed detection performance in the future. In 
addition, the agent decides whether it makes sense for the drone to be engaged. The weed detection performance 
prediction and drone engagement hint are propagated to the cluster level through telemetry. The prediction of 
application performance and the generation of the drone engagement hint are done using an ML model trained 
using real application data from field operations. The cluster agent monitors the state of the nodes, the state of 
the drone controller, and the predicted weed detection performance and drone engagement hint, and it uses this 
information to decide whether to engage/disengage the drone. The cluster agent logic is based on a finite-state 
machine (FSM), shown in Figure 17.   
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Figure 17: FSM used by the cluster MLSysOps agent to control the engagement/disengagement of the drone 
and the deployment of the drone weed detection component accordingly. 

In a nutshell, the drone is engaged when the tractor's performance is expected to be bad for some time, and the 
tractor agent produces a hint to engage the drone. It is disengaged when tractor performance is expected to 
become good again, and the hint is produced to disengage the drone, or when the drone becomes unavailable (it 
runs out of batteries and must return to land). Note that the weed detection application on the drone is deployed 
and starts running only when the drone starts following the tractor, and it is removed when the drone is 
disengaged. Based on the results of the real-world experiments, the drone weed detection component is expected 
to have satisfactory performance; thus, no additional checks are added in the FSM for this. Thus, the two factors 
that determine the engagement of the drone are the predicted performance of the tractor weed detection 
component and the status of the drone.  

To focus on the essence, the above FSM assumes that the tractor is always available and that the tractor 
component has already been deployed and is running there. The actual (implemented) FSM is more complex, 
handling the case where the tractor is/becomes unavailable (the drone remains/is disengaged). This is because 
the tractor is operated by a human who may decide to turn on/off the node at any point in time, so the system 
must be robust against such abrupt “node failures”.  

3.3.5 Integration and Testing  

Integration and testing were performed in a stepwise and controlled way, using three different types of setups, 
each serving a different purpose. The concrete setups and the tests that have been performed are described in 
the following sections.  

3.3.5.1 Virtual setup 

The virtual system setup was prepared using UTH's research testbed. Instead of the real tractor and drone nodes, 
we use two virtual nodes (VMs) in the simulation environment of UTH (see deliverable D4.3 “Final Version of 
System Simulators”). The virtual tractor and drone nodes run real autopilot software (Ardupilot framework10) 
configured to operate in software-in-the-loop (SITL) mode11 with the physics engine running in Gazebo12. This 
way, it is possible to run missions where the tractor follows a prespecified path to scan a field while the drone 
is engaged dynamically based on the decisions at runtime taken by the cluster agent. Furthermore, this ensures 
that the virtual drone node behaves similarly to the real drone. It is also important to note that the drone controller 
component is the same as that of the real drone of AUG. This considerably simplifies portability as this setup 
can be transferred to the real drone with minimal configuration changes; one merely needs to change the 
communication settings of the drone controller component to talk to the autopilot over a serial vs a UDP socket.  

Using this setup, exhaustive tests were conducted to verify the correct operation of all control/telemetry flows, 
the agent logic, and the functionality of the deployment mechanisms of the MLSysOps framework. Since we 
want to stress test the MLSysOps framework, instead of using the real application components of AUG, we use 
proxy components that emit similar performance metrics. These components are programmed to generate these 
metrics in a controllable/predictable way to trigger the engagement and disengagement of the drone according 
to the desired test scenarios. Thanks to this setup, several bugs and glitches have been identified and repaired 
before trying to use MLSysOps with the real nodes.  

 
10 Ardupilot, [Online]. Available: https://ardupilot.org/  
11 SITL, [Online]. Available: https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html  
12 Gazebo, [Online]. Available: https://gazebosim.org/home  

https://ardupilot.org/
https://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html
https://gazebosim.org/home
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3.3.5.2 Desk setups 

Two desk setups were used to perform extensive tests using the same nodes as in the field setup, before the 
actual field tests. These were mainly used to iron out technical issues regarding the specific hardware/software 
platforms of the tractor/drone devices and the networking with the cluster level and between them. There are 
two separate testing environments with distinct goals. The MLSysOps framework desk setup was used to test 
the networking and deployment of the tractor and drone applications through the MLSysOps framework, while 
the video playback weed detection desk setup was used to evaluate drone weed detection and localization 
performance, as well as verify weed transfer. 

3.3.5.2.1 MLSysOps Framework 

This setup uses two physical nodes, installed at AUG headquarters, representing the tractor and drone devices, 
featuring the same HW platform and peripherals as the real devices. These run the node-level parts of the 
MLSysOps framework and are connected over 4G (as this is the case in the field configuration) to the cluster 
agent and subsequently to the continuum agent, which are VMs hosted on AUG’s cloud.  

For this and all subsequent tests, the tractor and drone weed detection modules are packaged into standalone 
portable containers, which are deployed on the nodes through the MLSysOps framework. With this setup, all 
application and framework telemetry was running (see Figure 16) except for weed position transfer, which was 
tested in the second desk setup. 

The drone controller is connected to the SITL configuration of the autopilot to validate its behaviour upon 
receipt of commands (Take-off, Return-To-Land). To maintain control over the tractor node’s prediction, the 
ML model is substituted with a custom script that behaves in a predictable pattern upon manual modulations of 
the node’s telemetry. 

This setup provided the ability to controllably induce the framework to all possible real-world scenarios with 
no modifications to its installation or functionality. All tests that have been done using the fully virtual setup in 
the UTH testbed have also been successfully repeated in this extended setup. Additional tests were performed 
to validate the propagation of application telemetry from the tractor weed detection module to the drone 
controller, from the drone controller to the drone weed detection module, and from both weed detection modules 
to their respective node agents. 

3.3.5.2.2 Video playback weed detection 

This setup was used to develop drone detection and localization, and to verify weed transfer between the drone 
and the tractor. As mentioned earlier, it is a separate testing environment from the MLSysOps framework, as it 
relates solely to the weed detection application and not to the networking and deployment of the application 
containers on nodes. 

Initially, several drone flights were conducted on the field to capture and save videos from cameras. These 
videos are fed to the video-playback weed detection environment of AUG that replays the full operation cycle 
(detecting, localizing, and finally spraying weeds) through visualization windows and maps (see Figure 18, 
Figure 19, Figure 20). 

 
Figure 18: Detection window of video playback, with green points indicating the tractor-detected weeds. 
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Figure 19: Detection window of video playback, with yellow points indicating the drone-detected weeds. 

 
Figure 20: Map visualization of the video-playback weed detection. Green and yellow points indicate tractor and 
drone-detected weeds, respectively; red points indicate sprayed weeds. The tractor is shown with its attached 
sprayer; red areas are sprayed while grey areas are not. 

Having these videos available, the first step was to adjust the detection sensitivity of the drone and finally 
evaluate the result across several frames. The aim was to set the optimal sensitivity for the drone weed detection 
algorithm to match the tractor’s detection performance in good conditions (see Figure 21). 

 
Figure 21: Tuning of sensitivity settings for drone detection on a static frame. Low sensitivity: Missed weeds. 
Medium sensitivity: All weeds are detected. High sensitivity: All weeds are detected, but with excessive noise. 

After confirming that the drone detection performs effectively, the next step was to develop a localization 
scheme considering the drone's kinematic model. More specifically, a proper filtering method was developed 
to obtain accurate position, velocity, and orientation even when sensor data is noisy or incomplete. The stability 
of the drone movement was evaluated on several plots (see Figure 22). 
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Figure 22: Evaluating stability of the drone’s trajectory and attitude using the video playback weed detection. 

The weed transfer functionality from the drone to the tractor was examined on the same map. The video-
playback weed detection environment of AUG can assign different colours to weeds detected by the drone from 
the weeds detected by the tractor (see Figure 20). The localization accuracy of drone-detected weeds was 
validated by comparing their coordinates with those recorded by the tractor. 

3.3.5.3 Field setup 

The field used in these tests is located in Perivlepto, near the city of Volos. It is one of the test environments of 
AUG, primarily for weed detection experiments. Its dimensions are 200 m × 200 m, and it is slightly uphill but 
generally flat. 

 
Figure 23: The left image is a screenshot from Google Maps showing the field’s dimensions, while the right image 
is a photograph taken on-site. There is no sprayer attached to the tractor, as the data gathered from the tests suffice 
for the evaluation. 

This final setup was used for complete end-to-end testing and subsequent evaluation. It consists of the tractor 
with its cabin-mounted device and the drone with its own device. The containerized applications are deployed 
on the nodes, the ML model is running, and telemetry/application status is being propagated across all nodes. 
The drone weed detection is calibrated and sends the positions of detected weeds to the tractor’s spraying 
module in real time. Upon the receipt of commands from the cluster agent, the drone controller automatically 
controls the drone (for safety reasons, take-off and landing events are intercepted and approved manually before 
being propagated to the autopilot). 

The field setup was also used to collect data, not just the tractor and drone camera feeds and system/application 
telemetry, but also for the physical movement of the tractor and the drone (used to parameterize the respective 
simulated movements in the desk setup properly). 
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3.3.6 Data Collection  

As described above, field tests have been performed to validate that the setup is working as expected. During 
these tests, both the tractor and the drone device were configured to collect video and telemetry data. The latter 
includes system and application data as described in Table 6 and serve as the core feature for ML development. 
For application data, a Quality of Service (QoS) target has been generated that represents the acceptance 
threshold for sufficient weed detection. 

Table 6: Data/metrics collected for MLSysOps in the smart agriculture use case. 

Source Metric Type QoS 
Target 

Description 

System 

CPU load % N/A Instant CPU usage 

GPU load % N/A Instant GPU usage 

Memory usage % N/A 
Instant CPU and GPU 
memory usage 

Application 

Quality Indicator 1 Int > 50 
Number of data 
correspondences between 
samples 

Quality Indicator 2 Int > 50 
Number of data points used to 
compute localization 
components 

Field Indicator 1 Int N/A Number of detected weeds 

Field Indicator 2  Float < 0.1 
Fraction of field under 
environmental variation 

Sensor Fault Probability 1 Float < 0.3 
Probability of the camera 
sensor being affected by the 
sun 

Environment Sensor 1 Float > 600 

Measurement of 
environmental conditions as 
recorded by the onboard 
sensor 

Processing Performance Float > 15 Average processing 
performance over time 

Success Rate Float 1.0 Fraction of successfully 
processed samples 
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Heading Double N/A Instant heading of the vehicle 
in radians 

Velocity Double ∈[2, 10] 
Instant velocity of the vehicle 
in m/s 

Latitude Double N/A GPS coordinate of the vehicle 
in degrees 

Longitude Double N/A GPS coordinate of the vehicle 
in degrees 

Altitude Double N/A GPS coordinate of the vehicle 
in meters 

The amount of data that has been collected so far amounts to 30 GB for both drone and tractor devices from 
five successful data collection sessions in the field. This includes both video data (used for the video playback 
weed detection desk setup) and the telemetry features (used to train the ML model) described in Table 6. 

 

 

Figure 24: Images captured by the drone and tractor systems during the data collection sessions in the field. 

Figure 24 shows indicative images of the drone and the tractor devices captured during the field tests. These 
images are fed as input to the respective weed detection components running on the devices to produce the 
metrics listed in Table 6. 

3.3.7 Machine Learning Training and Evaluation 

An end-to-end analysis and modelling of drone deployment data was performed to predict the should_fly signal. 
First, the dataset was loaded and pre-processed, ensuring timestamps were sorted and converted to datetime. 
The class distribution of should_fly was explored, confirming that the classes were relatively balanced. To 
capture temporal dependencies, lag features were created for key variables, such as sensor_fault_probability_1, 
success_rate, processing_performance, velocity, and heading. Then, a prediction horizon in terms of seconds 
was defined, allowing the model to forecast the should_fly signal several steps ahead, mimicking real-world 
deployment lead time.  

Using these features, an Extreme Gradient Boosting (XGBoost) classifier was trained across multiple train-test 
splits and random seeds, recording performance metrics such as accuracy, precision, recall, and F1-score. The 
XGBoost classifier is one of the most popular and powerful machine learning (ML) algorithms used today. It is 
a decision-tree-based ensemble ML algorithm that uses a framework called gradient boosting. At its core, 
XGBoost is built on decision trees. More specifically, XGBoost builds multiple decision trees sequentially as 
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follows: it first creates a simple tree (model 1) to predict the target variable. As expected, the produced tree 
makes some errors. Next, the algorithm produces a second tree (model 2) that is specifically designed to predict 
the errors (residuals) made by the first model. Then, a third tree (model 3) tries to correct the errors remaining 
after models 1 and 2. This process repeats hundreds or thousands of times. Each new tree nudges the prediction 
closer to the truth by minimizing the "gradient" (the direction of the error) and boosting it towards the correct 
direction. 

The figures below show the model’s predictions over four recordings. In more detail, the ground truth values of 
the should_fly parameter were added in the background as shades of red. When the should_fly prediction 
variable is zero, the background is white, and when it is one, the background is shaded red. This variable 
indicates whether the drone should be dispatched to assist the tractor with the weed detection. With blue, we 
denote the sensor values of five useful variables: sensor_fault_probability_1, success_rate, 
processing_performance, velocity, and heading. With the red line, the model's predictions are shown.  

The model makes predictions for +5 and +40 timesteps into the future, using past and current sensor values 
(Figure 25 to Figure 32). The longer the forecasting settings the more efficient drone dispatch potentially 
becomes but with an expected accuracy drop. When the tractor needs drone assistance, we want the drone to be 
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already nearby. Due to the time needed for the drone to take off and travel to the tractor’s location, our model 
is trained to pre-emptively dispatch the drone so that it’s ready to use at the right time.  

 

Figure 25: Prediction plot at +5 timesteps 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        55 

 

Figure 26: Prediction plot at +5 timesteps 
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Figure 27: Prediction plot at +5 timesteps 
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Figure 28: Prediction plot at +5 timesteps 
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Figure 29: Prediction plot at +40 timesteps 
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Figure 30: Prediction plot at +40 timesteps 
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Figure 31: Prediction plot at +40 timesteps 
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Figure 32: Prediction plot at +40 timesteps 

Finally, the model predictions were visualized alongside the original signals around transition events, 
highlighting how prediction accuracy changes as the horizon increases. From the figures, we see that there is a 
potential trade-off between +5 and +40 timesteps by having more false positive predictions. 

Accuracy was further analysed over a range of horizons (Figure 33), plotting mean and standard deviation across 
seeds to quantify how predictive power degrades as we forecast further into the future. 
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Figure 33: Model accuracy across different prediction horizons 

3.3.8 Evaluation 

3.3.8.1 Experiment overview 

After successful desk setup experiments, the MLSysOps smart agriculture application is ready to be tested under 
real-world field conditions. The test was conducted before sunset in one of the AUG testbed environments that 
is described in the field setup (Section 3.3.5.3) 

The tractor’s starting position is on the western side of the field, facing east, while the drone’s starting position 
is on the northern side of the field. The initial positions are shown in Figure 34. The tractor starts moving 
forward, having the sun on its back, and the drone remains on land until the tractor requires support. 

 
Figure 34: On the left, the tractor’s trajectory; on the right, an on-site photograph showing the detection of each 
component. The tractor is standing on one corner of the field while the drone is on the ground. 

As the tractor turns, the sun enters the cameras’ field of view, causing a lens flare that degrades the weed-
detection performance and triggers the drone take-off (see Figure 35). The tractor then continues forward, makes 
another turn, and the same sequence is repeated. 
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Figure 35: On the left, the tractor’s trajectory; on the right, an on-site photograph showing the detection of each 
component. The tractor’s camera is exposed to the sun, and the drone is on its mission to maximize weed detection 
performance. 

Since the results can also be evaluated using the video-playback weed detection of AUG, video recording was 
enabled for both drone and tractor components, for the whole route. More specifically, a single continuous drone 
flight, rather than repeated take-off and landing cycles controlled by a specific ML-model instance, gives the 
opportunity to test and validate multiple ML-model or heuristic versions at a later stage. Additionally, having 
the video recordings of the entire route available and the video playback functionality (which can turn drone 
engagement on or off at any time) provides the opportunity to test a wide range of scenarios. More specifically, 
this can be used to subsequently investigate the trade-off between maximizing weed detection performance and 
minimizing flight time. Moreover, the availability of tractor video recordings does not require the tractor to be 
connected to a sprayer, allowing a wide range of spraying setups to be explored in a second phase. 

Summarizing, three conditions differentiate these field tests from purely randomly selected weed-spraying 
operations: 

1. These tests are performed during a time when light conditions hinder the weed-detection performance 
of the tractor. Otherwise, the drone cannot meaningfully assist the tractor. Note that farmers typically 
do operate during these hours.  

2. The drone is constantly deployed following the tractor but does not assist it. This, subsequently, helps 
to fine-tune the ML model to dispatch and return the drone at the optimal time, without having to re-
run the experiments for each new version.  

3. The control commands to the sprayer are captured/logged, but the tractor is not actually spraying. This 
is typical for AUG’s field tests (where it is important not to alter the field’s condition) and does not 
affect the behaviour of the system. Importantly, this also allows for performing multiple tests on the 
same field over multiple days. 

3.3.8.2 Results and KPI measurements 

3.3.8.2.1 Application Metrics 

The following metrics are defined to establish a basis for coherent evaluation:  

• Operation time: The elapsed time from the start of the operation. 
• Safe mode duration: The total time during which the system operated in a "blind" state due to 

unreliable weed detection performance, measured from the start of the operation. 
• Safe mode percentage: The percentage of safe mode duration relative to operation time. 

3.3.8.2.2  Tractor Operation 

The evaluation baseline is a classic weed-spraying operation with no drone support. The operator drives the 
tractor in the common “Back-and-Forth” pattern as shown in the previous section. The experiment shown below 
(see Figure 36) was one arbitrarily picked from many similar operations. 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        64 

 

 
Figure 36: The left image shows a map of the tractor’s operation from points A to E. Dark areas indicate sprayed 
regions, light grey areas indicate unsprayed areas, and red dots are the sprayed weeds. Dark areas without red dots 
represent safe-mode spraying, which is enabled when weed detection is unreliable. The right image shows example 
captures from locations 1–4 on the map. Sun creates flare artifacts on paths BC and DE (captures 2 and 4), unlike 
paths AB and CD (captures 1 and 3). 

Table 7: Metrics accumulated up to each point of Figure 36, during tractor operation. 

Pt Operation time (sec) Safe mode duration (sec)  Safe mode percentage (%) 

A 00.00 00.00 - 

B 33.34 10.15 30.44 

C 69.57 46.37 66.65 

D 105.82 60.67 57.33 

E 144.2 99.06 68.70 

 

As shown in Table 7, the tractor operates in safe mode for 68.7% of the total operation time. This is due to 
extended intervals of safe mode operation between points B (tB = 33.34 sec) and C (tC= 69.57 sec), as well as 
between points D (tD = 105.82 sec) and E (tE = 144.20 sec). These periods occur because of reduced weed-
detection performance caused by flare artifacts, as illustrated in the figure (see Figure 36):  

3.3.8.2.3 Drone Engagement and Weed-Detection Performance Improvements 

There are three realistic methods to dispatch the drone to assist with weed-detection automatically:  

1. Always-on engagement - Engage and disengage the drone when the tractor starts and stops its operation. 
The obvious disadvantage here is that the drone’s battery will be drained regardless of whether it assists 
with weed-detection. In most operations, the drone will not be required as the tractor may not enter safe 
mode at all (see Figure 37). In the following evaluation, this method is used as a baseline since it shows the 
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reduction in safe mode time theoretically achievable by an optimal, oracle-like engagement method that can 
accurately predict when the drone is necessary. It also shows the parts of an operation where the tractor is 
in safe mode but still cannot be assisted by drone data. 
 

2. Heuristic-based engagement - Decide on whether to engage the drone using a heuristic. For instance, a 
simple one would be to deploy the drone when the tractor enters safe mode (or finds itself in safe mode for 
an extended period). This would likely be an improvement over method 1, but it is not enough for a practical 
application. There is a large variety of reasons for which the system enters safe mode (some of which the 
drone cannot assist with) for varying lengths of time and, even if one were to categorize them, it would still 
be very hard to hand-implement an algorithm to predict when the system will enter safe mode in the future 
(a necessary feature since there is a delay from the drone deployment to its arrival in front of the tractor). 
Even harder would be to implement this in a scalable way that works for any field in any geographical 
location across the entire year. In the subsequent evaluation, a simple, yet powerful, heuristic-based drone 
engagement method is used as a comparison to the ML-based one: the drone will be engaged once the tractor 
is in safe mode, but only while it is holding a relatively steady heading. The reasoning behind the latter part 
is that during turns, the tractor may enter safe mode for reasons unrelated to its perception of the field and, 
even if it is perception-related (e.g., blinded by the sun), turns are periods where the state constantly changes 
and are not expected to last long. 
 

3. ML-based engagement - Use an ML model that is designed to engage or disengage the drone smartly, 
balancing weed-detection assistance and drone battery usage. The significant advantage here is that this 
model can be trained to predict long periods of safe mode before they occur, ensuring the drone has enough 
time to reach the tractor. The model can be subsequently evaluated on the large datasets AUG has acquired 
from fields all over the world. The effectiveness of this solution, the MLSysOps Smart Agriculture 
Application UC, is evaluated under real-world field conditions as presented below. 

 
Figure 37: Map visualization of a tractor operation with reliable weed detection performance. The tractor does not 
enter safe mode. Unlike the operation shown in Figure 36, this one is performed on a different field, in a straight 
line. 

For the tractor operation shown in Figure 37, where the tractor does not enter safe mode, and the weed detection 
performance is reliable, the ML model described in Section 3.3.7 predicts that the drone does not need to be 
deployed.  

 
Figure 38: The ML model, as the tractor operates (and velocity increases), predicts correctly that the engagement 
of the drone is not needed when the weed detection of the tractor is reliable. 
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For the tractor operation described in the previous section (3.3.8.2.2), the ML model predictions are presented 
in Figure 39. The model predicts that the drone is required when the tractor is on path BC and when it is about 
to enter path DE. It is important to note that the ML model sends a “take off” signal some seconds before the 
tractor enters safe mode, considering the latency and the time for the drone to reach the tractor. The ML model 
used considers this delay to be 8 seconds, which is an approximation based on drone flight tests. 

 
Figure 39: The ML model correctly predicts the need for drone engagement in two situations: (a) when a flare 
initially introduces artifacts, and (b) several seconds before the tractor enters the sun-facing trajectory.   

The contribution of MLSysOps and especially its impact on tractor operation is shown below in Figure 40: 

 
Figure 40: The left image shows a map of the tractor’s and drone’s operation from points A to E. Dark areas indicate 
sprayed regions, light grey areas indicate unsprayed areas to save herbicide, red dots are the sprayed weeds, and 
yellow dots are the drone-detected weeds. Dark areas without red dots represent safe-mode spraying, which is 
enabled when weed detection is unreliable. The right image shows capture from the drone and tractor at locations 
1 & 2 on the map. At both sites, the tractor’s cameras exhibit sun flare artifacts, whereas the drone’s cameras do 
not. 

Table 8: Metrics accumulated up to each point of Figure 40, during tractor and drone operation. 

Pt Operation time (sec) Safe mode duration (sec)  Safe mode percentage (%) 

A 00.00 00.00 - 
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B 33.34 10.15 30.44 

C 69.57 24.78 ( -21.59) 35.62 ( -31.03) 

D 105.82 37.03 ( -23.64) 34.99 ( -22.34) 

E 144.2 50.03 ( -49.03) 34.69 ( -34.01) 

 

As shown in Table 8, the tractor operates in safe mode for 34.69 % of the total operation time. (compared to 
68.7% without ML drone engagement approach). This is because the drone cameras are not directly exposed to 
the sun, allowing for reliable weed detection. As a result, the tractor does not need to enter safe mode. 

3.3.8.2.3.1 KPI – Safe Mode Time Reduction 

For the evaluation session, the time that the system has satisfactory weed detection performance, thanks to the 
drone, is improved by 49.48%.  

For a typical 10-hour workday, with 1.5-hour “flare” periods in the morning and evening, safe mode will be 
enabled for at least 1.5 hours plus ~1 hour for sharp turns or unobserved areas. Based on these, the operation 
time with satisfactory weed detection performance is estimated as: 

• Without MLSysOps (tractor only): 7.5 hours  
• With MLSysOps (tractor + drone): 9.0 hours   

This corresponds to a 12% increase in effective operation time when using the drone. 

Figure 41 shows the reduction in safe mode duration across the evaluation session that is achieved by the ML-
based method for engaging the drone vs the two other drone engagement methods. The always-on method sets 
a theoretical lower bound but is impractical due to battery use. The heuristic-based method improves on the 
tractor alone but has a reaction delay and cannot pre-dispatch the drone for future safe mode periods. 

 
Figure 41: Safe mode time (sec) in accordance with operation time (sec) for different methods: Always-on,  

Heuristic-based, ML-based, and No drone engagement. 
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3.3.8.2.3.2 KPI – Drone Battery Usage 

While there is no specific KPI metric for the battery consumption of the drone, it is important to note that the 
ML model attempts to balance off maximum drone support time with minimal flight time. In common terms, 
this is interpreted as “fly only when necessary”. This intent is shown in Figure 42 where there are two plots 
showing the reduction in flight duration (and therefore reduction in battery usage) introduced by the ML model 
engaging and disengaging the drone.  

The plot on the left corresponds to the evaluation test described above. Note that the model correctly identifies 
that the drone is no longer necessary after tC and commands it to land. It then predicts the drone will be needed 
soon after tD and pre-dispatches it. The plot on the right is from a session that had no issues with its weed 
detection, and the model correctly inferred that drone engagement was unnecessary. 

 
Figure 42: Flight time (sec) in accordance with operation time (sec) for different drone engagement methods:        

a) Always-on, b) ML-based. The plot on the left corresponds to the test shown in Figure 40, and the plot on the 
right a distinct test where the ML-model deemed the drone unnecessary. 

Under the conditions of the evaluation session and limiting the study only to the part of the day where flare 
conditions can occur (e.g., near sunset), the ML-based drone engagement policy achieves a notable reduction 
in flight time compared to the Always-on policy. It is more realistic to compare the policy against a naive 
approach that would fly the drone continuously only during that part of the day, instead of considering the entire 
day as potential drone engagement time.  

In the evaluation session, we managed to reduce the total flight time of the drone from 144 to 101 seconds. But 
this includes the beginning of the session, where the drone will not be pre-dispatched because the ML model 
has not yet been fed with the data it requires to make a prediction. Only counting the pre-dispatch-follow-
disengage-land cycle (which is expected to be repeated multiple times in a session), we measure a reduction in 
flight time from 61 to 53 seconds. This corresponds to a reduction of flight time (and thereby battery usage) of 
13%. 

3.3.8.3 Portability, Generality & Scalability 

The application software that is managed by the MLSysOps framework for the smart agriculture use case has 
been designed with portability as a core principle. A key feature is the shared software architecture between the 
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tractor and the drone. Both platforms run the same weed detection algorithm. Since the tractor system has 
already been validated across multiple real-world operations by AUG, this ensures consistent performance and 
quality when extending the weed detection solution to a drone system. This unified architecture simplifies 
maintenance and deployment across multiple hardware units.  

The ML model that was developed to predict the performance of weed-detection and produce the drone 
engagement hint is designed so that it can be trained based on different datasets, not only the ones that were 
collected in the particular field testbed used for MLSysOps projects, but also on other datasets AUG has 
acquired from farmers worldwide. This allows the ML model to generalize across different crops, regions, and 
environmental conditions, allowing the system to scale across different geographical regions and farming 
practices.  

Finally, application management can naturally scale across multiple systems. More specifically, multiple drone 
and tractor pairs in multiple clusters can operate simultaneously using the MLSysOps framework. At the cluster 
level, the raw (heavy) telemetry of the weed detection application component is consumed (processed by ML) 
locally on the tractor node. As a result, the data traffic between the tractor node and the cluster-level management 
logic only includes the performance predictions and drone engagement hints, which is very lightweight with an 
average traffic of just a few Kbps. In fact, it would be possible to adopt an even more efficient telemetry 
approach, where the node agent notifies the cluster agent only when the drone engagement hint changes, further 
reducing the node-to-cluster communication (this optimization was not pursued for debugging reasons, to have 
a steady periodic telemetry heartbeat between the node and the cluster). Similarly, the data traffic between the 
drone and the cluster-level logic merely includes the periodic status of the drone controller. 
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3.4 Overall Status Assessment 

The Smart City use-case has reached a high level of technical maturity and validation, with all core application 
components (noise processing, image processing, and telemetry forwarder) implemented, integrated, and 
successfully tested across virtual, lab, and real-world urban environments. The image processing pipeline has 
been adapted for Arm-based edge nodes (Nvidia Jetson) and validated for high-fidelity vehicle detection. The 
noise processing component reliably captures acoustic events, while the telemetry forwarder seamlessly 
aggregates metrics for MLSysOps consumption, ensuring full observability of the edge infrastructure. 

The MLSysOps framework’s instantiation and agent logic are implemented and fully functional. The 
hierarchical agent architecture (node, cluster, and continuum) has been validated, with the cluster-level agent 
successfully orchestrating the activation and deactivation of the image processing component using a predictive 
FSM-based policy. The system demonstrates robustness to network intermittency and supports intelligent 
hysteresis logic to prevent rapid power cycling in high-traffic environments. 

In total, comprehensive integration and testing were conducted. Virtual simulations allowed for initial stress-
testing of the control plane and agent decision logic. Lab setups validated the hardware calibration and acoustic 
sensitivity in a controlled environment. Real-world deployments in both private parking and public city centre 
clusters have confirmed full end-to-end operation under varying traffic densities and environmental conditions. 

Extensive data collection has been completed, resulting in a rich repository of synchronized noise and video 
telemetry from multiple nodes over prolonged operational periods. These datasets cover critical system 
performance metrics (energy, CPU/GPU load) and application of QoS metrics (detection accuracy, latency), 
providing a robust foundation for adaptive normalization and threshold optimization strategies. 

An ML-based activation model has been successfully trained, evaluated, and optimized. The model leverages 
an LSTM architecture with adaptive P99 normalization to predict traffic events proactively, mitigating hardware 
latency. Field evaluations demonstrate substantial energy savings in private infrastructure while maintaining a 
capture rate above 98% when used on high traffic density scenarios. 

Overall, the system is functional, validated under real-world conditions, and capable of scaling from single 
clusters to city-wide deployments. Future work primarily focuses on refining the ML models to enable better 
performance on low traffic settings and increase robustness for low noise vehicle detections. 

The Smart Agriculture MLSysOps use-case has reached a high level of technical maturity and validation, with 
all core application components (tractor weed detection, drone weed detection, drone controller, and sprayer 
controller) implemented, integrated, and successfully tested across virtual, desk, and real-field environments. 
The drone controller has been validated both in simulation and on real hardware, supporting the complete 
operational lifecycle. Weed detection components on both tractor and drone reliably produce application 
metrics, exchange telemetry, and support weed location transfer. At the same time, the sprayer controller is 
reused unchanged from production systems, ensuring high technology readiness. 

The MLSysOps framework’s instantiation and agent logic are implemented and fully functional. The multi-
level agent architecture (node, cluster, and continuum) has been validated, with the cluster-level agent 
successfully controlling drone engagement and application deployment using an FSM-based policy. The system 
demonstrates robustness to node availability changes and supports dynamic engagement and disengagement of 
the drone based on predicted weed-detection performance. 

In total, comprehensive integration and testing were conducted. Virtual simulations enabled for thorough testing 
of control flows, telemetry, and orchestration logic. Desk setups validated real hardware, networking, 
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containerized deployments, and telemetry propagation. Field experiments have confirmed full end-to-end 
operation under real environmental conditions. 

Extensive data collection has been completed, resulting in over 30 GB of synchronized video and telemetry data 
from multiple field sessions. These datasets cover system, application, and environmental metrics and provide 
a solid foundation for ML model training and future optimization. 

An ML-based drone engagement model has been successfully trained and evaluated. The model accurately 
predicts future safe-mode conditions well in advance, enabling timely drone deployment. Field evaluations 
demonstrate a substantial reduction in tractor safe-mode operation, leading to a 12% increase in effective 
operation, confirming the positive effect of the MLSysOps approach compared to heuristic and baseline. 

Overall, the system is functional, validated under real-world conditions, and able to further scale and get 
optimized. Future work primarily focuses on fully trained ML models with refined engagement policies and 
expanding large-scale field evaluations, rather than addressing fundamental system gaps. 
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4 Evaluation of Application-neutral Functionalities  
This section presents the evaluation status with respect to the core functional requirements for MLSysOps. The 
information is provided in a structured way, per requirement group (RG) and for the respective KPIs, giving a 
short description of the work that was done related to the requirement group to achieve each KPI, the current 
level of achievement, and the used testbed or simulator.  The rationale for such activities of simulator selection 
and customisation is to match the Requirement Groups (RGs) reported in Table 1.  We use the following 
shorthand notation to capture the achievement level: “o” means that the KPI has not been achieved yet; “+” 
means that the KPI has been partially achieved; “++” means that the KPI has been fully achieved. The testbeds 
and simulators are presented through identifiers that can be mapped to detailed descriptions in Appendix A.  

4.1 Structured System and Application Description 

In WP2, work was done to define suitable system infrastructure and application descriptions. These descriptions 
can be used to capture various system configurations and applications that include multiple components that 
may also interact with each other using IP-based communication.  

4.1.1 RG-KPI 1.1: System infrastructure description can capture at least the infrastructure of MLSysOps 
application testbeds and research testbeds 

The formal infrastructure description is sufficient to capture the system infrastructure of the two application use 
cases (UBIW, AUG). The concrete descriptions are provided in Sections 3.2 and 3.3. More complex system 
descriptions have been used to capture a variety of system configurations in the various research testbeds as part 
of the evaluation experiments that were performed for other KPIs.  

Achievement level: ++ 

Testbeds/Simulators used:  TB-APP-1, TB-APP-2, TB-R-5, TB-R-6, TB-R-7 

4.1.2 RG-KPI 1.2: Describe application components so that they can be freely placed in at least two 
different layers of the continuum and linked with RG-KPI 2.1 and RG-KPI 2.2 

The formal application description is sufficient to capture applications with multiple different components, and 
for each component to have different images associated with it, depending on the target platform. Also, the 
description allows the expression of any deployment restrictions and the desired flexibility regarding the 
placement of each application component in the continuum, allowing a given component to be pinned to a 
cluster or a node or leave placement up to MLSysOps, in which case the component can be freely placed (and 
possibly relocated) in the continuum. As part of the experiments for other KPIs, extensive tests have been 
performed using heterogeneous system configurations to verify the flexible placement (and relocation) of a 
given application component in VMs, workstations, and embedded computing nodes (such as RPi and Jetson), 
based on the application description. 

Achievement level: ++   

Testbeds/Simulators used:  TB-R-5 

4.2 Application Deployment and Orchestration  

A multi-cluster system was setup using Karmada, Kubernetes, and the Far-Edge node gateway of FhP, 
combining different clusters and widely heterogeneous nodes/hosts that are used to run application components, 
including VMs, powerful workstations, Jetson, RPi, FPGA SoC Smart-Edge nodes, and Arm-M4 
microcontroller Far-Edge nodes. The RPi and Jetson nodes are equipped with a 4G interface to connect to the 
Internet wirelessly and be able to play the role of mobile nodes. The RPi, Jetson, and workstation are equipped 
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with a Wi-Fi interface, which is used as an alternative communication channel. Moreover, there are system 
configurations that include emulated Smart-Edge nodes and Far-Edge nodes, which appear and are used as 
proper nodes in the respective clusters, together with real nodes. Also, mobile nodes are emulated using the 
drone simulation environment of UTH (D4.3).  

This setup was used to perform a wide range of experiments regarding application deployment and dynamic 
adaptation at runtime. In addition, extensive tests have been performed for the two application use cases using 
virtual/emulated nodes. Extensive tests were also done using a combination of emulated nodes and real nodes.  

4.2.1 RG-KPI 2.1: Deploy an application with at least three components so that at least one component is 
placed at the Far-Edge, Smart-Edge, and Edge/Cloud Infrastructure 

Tests were performed to confirm the successful deployment of a distributed application composed of at least 
three distinct components, each placed on a different layer of the computing continuum. Specifically, 
components of video processing, noise and temperature monitoring applications were deployed. One component 
was deployed in a virtual machine within the Edge/Cloud layer, responsible for video and image processing 
tasks. A second component was deployed on a Raspberry Pi Smart-Edge node, handling intermediate video 
analytics and sensor data aggregation. A third component was deployed on a Kallisto Far-Edge node, performing 
low-level temperature and noise data acquisition and preprocessing on resource-constrained hardware. These 
tests confirmed the ability to execute coordinated, multi-component applications across heterogeneous nodes 
spanning all infrastructure layers, with components communicating and operating seamlessly as part of a unified 
distributed workflow. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-7 

4.2.2 RG-KPI 2.2: Deploy application components on at least two types of Smart-Edge and two types of 
Far-Edge nodes featuring different CPUs/ Micro Controller Units (MCU) and/or sensors 

Tests were conducted to confirm the successful deployment of application components on at least two types of 
Smart-Edge nodes and two types of Far-Edge nodes, featuring different CPUs, microcontroller units, and 
sensing capabilities. Application components were deployed on three different Smart-Edge platforms, including 
Raspberry Pi, NVIDIA Jetson, and FPGA-based SoC systems, as well as on two variations of Kallisto Far-Edge 
nodes equipped with different sensors and radio interfaces, namely a Kallisto node with a temperature sensor 
and IEEE 802.15.4 radio, and a Kallisto node with a noise sensor and Wi-Fi radio. The deployed components 
included computer vision pipelines based on OpenCV for video and image processing, YOLO-based object 
detection models, image classification CNN models, and lightweight processing components for temperature 
and noise sensing executed on microcontroller-based devices. These experiments demonstrated the portability 
and adaptability of application components across heterogeneous Smart-Edge and Far-Edge platforms with 
diverse computational capabilities, sensors, and communication interfaces. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-7 

4.2.3 RG-KPI 2.3: Have a deployment where at least two application components can interact with each 
other over either 4G/Internet, Wi-Fi, IEEE 802.15.4, or Bluetooth links 

Tests have been performed to confirm the successful interaction between application components over the 
default network path (which is also used for the control and telemetry plane of MLSysOps) over Ethernet and 
4G. Tests have been performed to confirm the successful interaction between application components running 
on Smart-Edge nodes over Wi-Fi using both ad-hoc and infrastructure modes. Furthermore, tests have been 
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conducted to verify the ability to switch dynamically, at runtime, application traffic between different network 
interfaces, and more specifically, between Ethernet/4G to Wi-Fi and vice versa. Notably, Far-Edge nodes 
communicate with the rest of the system over Wi-Fi or 6LoWPAN (via the Far-Edge node gateway), in which 
case Wi-Fi or 6LoWPAN is used not just for the application traffic but also for the control/telemetry plane.  

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-7 

4.2.4 RG-KPI 2.4: The initial deployment plan is close to optimal, i.e., within 10% vs. a plan produced by 
an offline/oracle algorithm 

Tests have been performed for an indicative application consisting of two interacting components; the client 
component is pinned on a Smart-Edge (mobile) node, while the service-providing component is allowed to be 
freely placed on edge nodes or in a VM running in a server cluster. A Reinforcement Learning policy has been 
developed, based on the Advantage Actor-Critic (A2C) algorithm, to select the host with the minimum recorded 
latency (based on pre-recorded data). The model accuracy is 91% compared to an oracle policy that always 
selects the node with the minimum recorded latency.  

In larger-scale simulated scenarios, the initial deployment logic is handled by the same sophisticated engines 
that drive the adaptive behaviour. For example, CLEAR employs a Deep Q-Network (DQN) reinforcement 
learning agent to optimize serverless execution. The core policy dynamically tunes container "keep-alive" 
durations on a per-invocation basis, rather than relying on fixed timeouts. Guided by a multi-objective reward 
function, the agent learns to balance cold start latency against the carbon footprint of idle resources, adapting 
its strategy in real-time to workload patterns and user-defined preferences for performance versus sustainability. 
CLEAR employs a trained Deep Q-Network (DQN) agent that makes placement decisions for every function 
invocation. Since the system's cumulative performance across full trace simulations tracks closely with an 
optimal Oracle (as detailed in RG-KPI 2.5), the initial deployment decisions—which constitute the start of these 
traces—are validated as part of this near-optimal trajectory. 

The initial (so-called default) deployment is predefined for the two application use cases. No ML is required for 
this. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, SIM-2 

4.2.5 RG-KPI 2.5: When changes in system state and application execution profile are detected, 
produce/execute an adapted deployment plan close to optimal, i.e., within 10% vs. a plan produced 
by an offline/oracle algorithm 

Tests have been performed for the application described above (two application components, one pinned on a 
Smart-Edge mobile node and one that can be freely placed in the continuum). In this case, adaptation concerns 
the placement of the non-anchored component and the redirection of application traffic between 4G and Wi-Fi, 
with the objective of improving end-to-end latency. Adaptive deployment has been tested using a simple 
heuristic and a more intelligent data-driven heuristic that learns from previous experience.  

In simulated scale-out experiments, we have quantitatively validated the optimality of the system's adaptation 
using real-world traces. PeakLife utilizes a deep surrogate model with an encoder-decoder architecture to jointly 
forecast three critical metrics: average CPU utilization, peak CPU utilization, and remaining VM lifetime. This 
predictive capability drives a proactive migration policy that employs an adaptive utilization threshold tuned to 
predicted workload burstiness. By applying a cost-based VM selection strategy that filters out short-lived 
instances, the policy effectively minimizes unnecessary migrations and service level objective (SLO) violations 
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compared to static heuristics. The PeakLife framework was evaluated against an Oracle strategy that assumes 
perfect knowledge of future resource requirements. PeakLife's adaptive migration policy matched the Oracle's 
performance within 7.47% for migration counts and 1.13% for SLO violations, proving the adaptation plan is 
nearly optimal. 

Similarly, the CLEAR framework was tested against the Oracle scheduler over diverse workload traces. The 
RL agent's adaptive decisions for keep-alive and placement incurred only a 6.18% increase in carbon costs and 
a 7.2% increase in cold start counts compared to the optimum achieved by the Oracle. These results confirm 
that the system's dynamic adaptation to changing system states consistently falls within the targeted 10% margin 
of an optimal offline algorithm. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, SIM-2 

4.3 Node-level Resource Usage & Management  

A broad spectrum of heterogeneous nodes is currently supported so that they can be used as part of a system 
slice that is managed by MLSysOps, including server machines, powerful workstations, NVIDIA Jetson, RPi, 
FPGA SoC, and Arm-M4 microcontroller nodes. Depending on the node type, different settings/configurations 
are supported so that MLSysOps can exploit them to achieve energy-efficient processing. Also, support for the 
transparent exploitation of hardware-based acceleration is achieved via vAccel (NUBIS), which allows 
applications to invoke accelerated function implementations in a portable way across heterogeneous nodes. 
More details on these experiments are shown in Section 3 of D3.2. 

4.3.1 RG-KPI 3.1: Different combinations of power configurations spanning the energy efficiency space 
are supported for at least one type of Cloud/Edge Infrastructure node, Smart-Edge node, and Far-
Edge node 

Tests have been performed to confirm the ability to set the CPU/GPU frequency on the datacentre server, 
workstation, Jetson, and RPi. Tests have been performed to confirm the ability to dynamically set the number 
of cores that will be used to run a workload/application component on the server machine. The systems 
encompass a heterogeneous range of architectures, such as x86, ARM, NVIDIA GPUs, and FPGA 
reconfigurable platforms. Moreover, Far-Edge nodes expose a power-related knob that allows switching 
between different radio transmission power levels.  

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-7 

4.3.2 RG-KPI 3.2: Offer at least three different function implementations (CPU Only, GPU, Field 
Programmable Gate Arrays (FPGA)) that are transparently invoked by at least two different 
application components 

Tests have been performed to confirm the end-to-end invocation of a core image processing function (Optical 
Flow based on OpenCV libraries) supported by two different CPU and GPU implementations. Tests have also 
been performed to confirm the deployment and execution of application components that invoke this function 
on four different types of nodes: workstation (x86 CPU and GPU), Jetson (Arm CPU and NVIDIA GPU), Xilinx 
ZCU102 MPSoC (Arm CPU, FPGA), and RPi (Arm CPU).  

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5 
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4.3.3 RG-KPI 3.3: The performance overhead for the transparent usage of the acceleration hardware 
should be low (< 5% vs. a hardwired invocation of the respective implementation) 

The overhead of vAccel for native execution (no remote plugin/network involved) has been measured to be less 
than 3%. These preliminary results were shared at a conference, and a more complete evaluation of vAccel has 
been conducted during the third year of the project, showing clear trade-offs between local execution (no 
acceleration) and remote execution (both CPU and GPU execution). 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5 

4.3.4 RG-KPI 3.4: Offer acceleration support for at least one high-level ML framework (TensorFlow or 
PyTorch) for inference and training 

We have initial vAccel support for basic Tensorflow operations (SessionLoad, SessionRun) and Torch’s 
jitLoadForward operation. We are working on the implementation of various models with Torch (Bert, Resnet, 
MobileNet, etc.). We have abstracted both Tensorflow and Torch APIs to a simple model_load(), model_run() 
flow, and, thus, it can encompass any similar high-level framework that follows this abstraction. The mechanism 
and its evaluation are released as open source through the vAccel software framework.   

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-6 NUBIS 

4.3.5 RG-KPI 3.5: The initial node level and local application configuration are close to optimal, within 
10% vs. a configuration produced by an offline/oracle algorithm 

We have developed a custom reinforcement learning (RL) algorithm designed to identify the most efficient 
execution configuration by analysing neural network characteristics and available system resources. 
Specifically, we applied this approach to optimize core allocation on a multi-core CPU for Convolutional Neural 
Network (CNN) inference. Our experiments with this offline-trained model demonstrate high precision; it 
achieves performance levels identical to or comparable to manually optimized configurations, with minimal 
deviation. 

In addition, we have developed a novel management framework driven by a custom RL agent that dynamically 
optimizes FPGA configurations. By leveraging real-time telemetry—including system utilization, power 
consumption, and application performance—the agent determines the optimal task-to-hardware mapping for 
incoming CNN inference tasks. Experimental evaluation on the Xilinx Zynq UltraScale+ MPSoC ZCU102 
demonstrates that the framework achieves, on average, 95% of the optimal energy efficiency across several 
CNN models. 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5 

4.3.6 RG-KPI 3.6: When changes in the local node state and application execution profile are detected, 
the adapted configuration falls within a 10% margin vs. a plan produced by an offline/oracle 
algorithm 

The same RL models referred to in RG-KPI 3.5 are deployed online and continuously monitor the system using 
real-time telemetry data.  When changes in the system state or workload requirements are detected (for example, 
a new CNN model is deployed for inference), the RL agent dynamically selects an FPGA configuration plan 
that is near optimal for this new workload. Evaluation results confirm that these adaptive configuration decisions 
consistently keep system efficiency within a 10% margin of the best-known efficient configuration. 
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Achievement level: ++ 

Testbeds/Simulators used: TB-R-5 

4.4 Storage 

The following KPIs have been identified for the MLSysOps Storage system. All KPIs have been validated in 
the UTH testbed. 

4.4.1 RG-KPI 4.1: Integrate at least 20 cloud storage locations across at least 4 commercial cloud providers 

The basic functionality of an S3-compatible object storage service has been completed; it supports (among 
others) the following S3 endpoints: 

- Create Bucket 
- List bucket contents 
- Delete bucket 
- Create object 
- Retrieve object 
- Delete object 

A notable detail is how heterogeneous storage resources are represented and made available for the end user. 
The storage service introduces the concept of a “Storage Policy”, which contains the erasure coding 
configuration (e.g., total and redundant number of fragments), as well as the storage location identifiers where 
the fragments should be placed. When a bucket is created, a Storage Policy is attached to it, which defines how 
objects in the bucket are encoded and where their fragments are distributed. The listed storage locations may 
include any combination of cloud and edge resources.  

Regarding cloud locations, we have completed integrations with 110 regions of 13 commercial cloud providers 
from which users can choose. Edge storage can be included by deploying MinIO13 instances in the MLSysOps 
slice and sharing their credentials with the storage service. The storage gateway is already able to use these 
resources. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5 

4.4.2 RG-KPI 4.2: Share availability and performance measurements with the (ML-driven) policies within 
60 minutes of the data transfer. 

The storage system records the performance (latency and speed) of every fragment upload and download that 
occurred in an MLSysOps-enabled bucket synchronously to an InfluxDB table. This information is immediately 
available to the ML component after the up/download completed. 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5 

 
13 https://min.io/docs/minio/linux/operations/install-deploy-manage/deploy-minio-single-node-single-drive.html  

https://min.io/docs/minio/linux/operations/install-deploy-manage/deploy-minio-single-node-single-drive.html
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4.4.3 RG-KPI 4.3: Record availability and performance of all cloud and edge storage locations at least 
once every 6 hours.  

This KPI was achieved through an automated, continuously running measurement pipeline. Every six hours, a 
scheduled cron job enumerates all configured cloud and edge storage locations and creates measurement tasks 
for the upcoming six-hour window. For each storage location, a uniformly random execution time within that 
window is generated. This design intentionally avoids fixed measurement times, preventing systematic bias and 
ensuring that performance and availability are observed under varying network and load conditions throughout 
the day. 

The generated tasks are placed into a task queue with their predefined launch times. When dispatched, each task 
performs a standardized set of uploads and download tests against the target storage location using randomly 
generated files of 1 MB, 10 MB, and 50 MB. For every transfer, the file size and elapsed time in milliseconds 
are recorded, allowing throughput to be derived, while failures are explicitly logged to build an availability time 
series. All results are persisted in a BigQuery table, enabling full SQL-based analysis, aggregation, and long-
term tracking of storage availability and performance across all locations. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5 

4.4.4 RG-KPI 4.4: Share file access events with the (ML-driven) policies within 15 minutes of the event. 

While RG-KPI 4.2 focuses on telemetry describing the performance characteristics of cloud and edge storage 
locations (e.g., upload and download throughput), RG-KPI 4.4 addresses the timely collection of usage 
telemetry for buckets where adaptive storage policies are enabled. Specifically, we record object download 
events to inform the ML components about changes in traffic volume and access patterns, such as shifts in 
geographic distribution or request frequency that may warrant policy adaptation. 

Each download event is recorded immediately after the object contents have been successfully served, using a 
background task within the request handler to avoid impacting request latency. Events are written to a BigQuery 
table and include the event timestamp, bucket and object identifiers, and the location of the gateway that handled 
the request. Rather than recording IP-based user locations, we log the gateway location to preserve user privacy. 
Gateways are exposed via a single service URL and use anycast DNS, ensuring that requests are routed to the 
geographically closest gateway. As a result, the recorded gateway location provides an accurate approximation 
of the request origin without introducing privacy concerns, while still enabling timely (well within 15 minutes) 
and effective feedback to the ML-driven policy engine. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5 

4.4.5 RG-KPI 4.5: Realize the storage representation changes decided by the (ML-driven) policies in a 
maximum of 15 minutes per MB of data affected.   

We have decomposed this complex problem into 3 individual parts that work together to identify when and how 
a bucket’s Storage Policy should be changed in response to significant changes either in the storage location 
performance or bucket traffic: 

• Predict bucket traffic origin and magnitude based on past traffic and other factors like time of day 
• Predict storage location performance based on past performance and other factors like time of day, 

type (cloud or edge), and cloud provider 
• Generate alternative Storage Policies, choose the most suitable one, and decide whether the 

migration from the current to the new policy is worth migrating 
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We have developed an ML-based solution that proposes the optimal Storage Policy for a bucket. A Policy is 
suggested based on the traffic distribution in the examined time window (currently past 15 minutes), as well as 
high-level restrictions (transfer speed and latency targets), geo-fence (e.g., only store fragments in whitelisted 
countries), and an arbitrary mix of optimization goals between cheapest transfer, geographical proximity to 
traffic origins and storage locations that have the highest bandwidth to the traffic origins.  

We have extended the mechanism of changing the storage representation of objects in a bucket when a new 
optimal Storage Policy differs from the one currently applied to the bucket. The final subsystem can change a 
bucket between any two Storage Policies, including changing erasure coding configuration and/or the fragment 
locations. The process is guaranteed to generate the least amount of data transfer when carrying out the bucket 
migration. From the user’s perspective, this migration is a transparent atomic background process that either 
fully succeeds or makes no changes. The bucket stays fully operational during the migration, and the new object 
representations are atomically swapped at the end by updating the object metadata in a single database 
transaction after all data movement has taken place. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5 

4.5 Trust 

We have validated on the UTH testbed. Besides, we use Raspberry Pi 5 (8GB) as the simulator hardware since 
it includes an onboard power monitoring sensor, which means we can measure power without adding any 
external measurement hardware. For storage, we use a SanDisk High/Max Endurance microSD card as a solid 
and reliable choice for sustained operation. Finally, we use two units so we can validate multi-node scenarios, 
such as connectivity and interaction between devices. 

4.5.1 RG-KPI 5.1: Reputation/credit calculation is performed in real-time, within a few milliseconds. The 
calculation aims to consume <=5% of the energy consumption during normal application execution. 
The bandwidth cost is similar to the cost of a normal application communication message (with or 
without authentication, the bandwidth performance remains similar). Furthermore, resource and 
application allocation and policy adjustments related to credit should be performed on the same scale 
as above. 

To fulfil this RG-KPI with an effective and deployable trust evaluation mechanism, we implemented an online 
anomaly-detection-driven trust scoring module based on a lightweight, fully connected autoencoder. Telemetry 
features are normalised using Min–Max parameters estimated from aggregated training data that concatenates 
traces collected under multiple workload regimes (idle/medium/high CPU crossed with idle/medium/high 
memory), reducing sensitivity to benign load changes and improving robustness under dynamic edge conditions. 
The autoencoder compresses the input feature vector through successive linear layers down to 0.1× of the 
original feature size. It reconstructs it, and the per-sample anomaly score is computed as the reconstruction error 
(RMSE) between the input and the reconstruction. The threshold is derived from the training error distribution 
using a percentile-based cut-off. The anomaly score is mapped to an anomaly probability via a sigmoid function 
and converted to an instantaneous benign signal, which is then smoothed with exponential smoothing to obtain 
a bounded trust score T(t) in [0,1] that evolves gradually and is resilient to noise spikes.  

In our edge testbed (two Raspberry Pi 5 nodes), the end-to-end trust score update latency is 7.4 ms (median) 
and 9.9 ms (90th percentile) per telemetry window, meeting the “few milliseconds” requirement, and the end-
to-end reaction time from a score change to an enforced allocation/policy update is 9.8 ms (median) and 15.5 
ms (90th percentile). We also profiled the additional energy overhead introduced by feature extraction, plus 
autoencoder inference, plus trust score update, and observed 3.6% average overhead with 4.7% worst-case 
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overhead versus baseline execution, remaining below the 5% target. Trust dissemination is performed using 
compact, event-driven delta updates (plus low-rate heartbeat), keeping added bandwidth close to normal control 
signalling. The observed added bandwidth is 6.2% relative to baseline traffic, which is comparable to a typical 
application control message and consistent with the KPI requirement. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-8 

4.5.2 RG-KPI 5.2: The authentication should be 100% accurate, i.e., once an entity passes the 
authentication, it should be 100% what it claims to be. 

To fulfil this RG-KPI, we implemented a Zero-Trust Architecture using Istio Service Mesh, ensuring encrypted, 
authenticated, and protected communication from the Smart-Edge layer to the Edge and Cloud infrastructures. 
Istio employs mutual Transport Layer Security (mTLS) to encrypt all inter-service traffic, verifying the 
identities of both sender and receiver to prevent unauthorised access and ensure data confidentiality. 

Istio dynamically manages identities by integrating with Certificate Authorities (CA) to issue and rotate 
cryptographic certificates. Access controls are enforced through fine-grained policies, defining which services 
can interact and under what conditions. As new nodes or services are introduced, Istio automatically integrates 
them into the secure communication network, maintaining adaptability without compromising security. 
Additionally, Istio’s monitoring tools enable real-time observation and detection of anomalies, further 
enhancing security. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-8 

4.5.3 RG-KPI 5.3: The time for adapting the encryption/decryption to the trust level of nodes will be a few 
milliseconds, and there should not be more than 5% energy cost vs normal application execution. 
The extra bandwidth the encryption brings will be restricted by the 15-20% expansion of the original 
communication data. 

To satisfy this RG-KPI, we implemented trust-aware encryption adaptation on top of Istio by coupling 
MLSysOps trust scores with dynamic mesh security policy selection. Depending on the trust level, traffic is 
routed through different enforcement profiles (e.g., strict mTLS and restrictive policies for low-trust nodes while 
maintaining standard secure communication for normal operation). Trust changes are propagated to the mesh 
control layer such that the new profile becomes effective within 5.1 ms (median) and 9.7 ms (90th percentile) 
from a trust score update, satisfying the “few milliseconds” adaptation requirement. Figure 43 shows the results 
for the 90th percentile of the added latency in milliseconds compared with the baseline. The added latency is 
below 1 millisecond, as expected by the KPI. Using the same benchmarking setup as our latency experiments 
(HTTP/1.1 payload, 1000 requests per second, 1/2/4/8/16/32/64 concurrent connections with mutual TLS 
enabled), the 90th percentile added latency compared to the baseline remains 0.86 ms, aligned with the KPI 
expectation. The energy overhead attributable to trust-adaptive security enforcement is 3.1% on average (4.4% 
worst-case) compared to normal application execution, remaining within the 5% limit. In comparison, the 
measured bandwidth expansion introduced by encryption/policy overhead is 14.2% for typical payload sizes 
and 17.8% in the worst case for small payloads, staying within the 15–20% expansion bound.  

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-8 
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90th percentile latency* 

 
Figure 43: Latency in milliseconds vs different Istio modes. 

4.6 Wireless Network Management and Security at the Edge 

The following KPIs have been identified for the MLSysOps network management and security system. They 
specify the need to manage node connections and support application deployment and adaptation based on real-
time, ML-driven evaluations of security-related parameters. This capability is important for maintaining the 
integrity of 5G networks in the presence of potential malicious activities, such as a power-based jamming attack. 
To address these requirements, we implemented an ML-driven framework designed to monitor, assess, and 
adapt connections and deployments based on security insights derived from targeted feature analysis. The 
framework has been thoroughly evaluated using predefined KPIs to ensure its effectiveness and reliability. 

4.6.1  RG-KPI 6.1: Manage a network with at least 3 edge nodes (one mobile Smart-Edge node and some 
fixed Smart-Edge nodes) with latency kept below 10 milliseconds and Packet Delivery Ratio (PDR) 
higher than 90%. 

The framework was evaluated in a network setup comprising at least three edge nodes, including one mobile 
Smart-Edge node and multiple fixed Smart-Edge nodes, which compose our 5G network environment. The 5G 
Core (5GC) was implemented using the open-source Open5GS project. Two Nuand bladeRF 2.0 micro SDRs 
served as the physical layer transceivers. One SDR was configured to operate as the gNB, while the second was 
dedicated to acting as a jammer. A COTS OnePlus Nord 2T 5G smartphone was used as the UE, ensuring that 
the data collected from the device side accurately reflects the behaviour and logging mechanisms of a real-world 
consumer product. The system was designed to maintain strict performance metrics, ensuring end-to-end latency 
remained below 10 milliseconds, and Packet Delivery Ratio (PDR) exceeded 90%. This was established through 
trace monitoring from the Next Generation Node B (gNB) and User Equipment (UE) side. Simulation results 
demonstrate that the framework consistently met the latency and PDR requirements across various workloads 
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and mobility scenarios, validating its robustness and adaptability in managing Smart-Edge networks under 
stringent performance constraints.  

Achievement Level: ++ 

Testbeds/Simulators used:  TB-R-2 

4.6.2 RG-KPI 6.2: Manage a network with at least 3 edge nodes (one mobile Smart-Edge node and some 
fixed Smart-Edge nodes) with anomalies detected with an accuracy higher than 90% and detection 
time lower than 100 milliseconds. 

During the primary analysis phase, we examined several approaches to meet this RG-KPI effectively. Initially, 
we hypothesized a detection framework that applies to multiple wireless technologies through analysis of 
general network metrics for anomalies and then identifies attacks based on predefined patterns. However, this 
approach presented key challenges: the dependence on generalised metrics limited the adaptability to specific 
wireless scenarios and the ability to detect nuanced attacks such as power-based jamming. To overcome the 
limitations, we developed a more specialised feature extraction model tailored to the 5G technology 
environment. In this approach, we focused on extracting targeted security-related features from the 5G UE and 
gNB logs and traces. These features included metrics such as Channel Quality Indicator (CQI), Modulation and 
Coding Scheme (MCS), PDR, and Uplink/Downlink power level parameters indicative of jamming and signal 
interference.  

The extracted features were given as input to several ML models trained specifically to detect power-based 
jamming attacks. By utilising these targeted, granular features, the models were trained to distinguish between 
normal fluctuations and security anomalies with a high degree of accuracy. 

As shown in Figure 44 a comparative evaluation of four ML models, SVM, KNN, Gradient Boosting Decision 
Tree (GBDT), and Random Forest (RF), was conducted. All tested models successfully met the KPI's accuracy 
target of >90%. The GBDT model demonstrated strong performance by achieving the highest Accuracy at 0.96, 
and Precision of 0.99, while the highest Recall of 0.99 was achieved by the SVM model. Notably, the GBDT, 
SVM, and RnF models all registered a strong ROC_AUC score of 0.95. This performance demonstrates the 
practical applicability of these models in real-world scenarios, particularly in detecting jamming attacks with 
fewer false positives and false negatives. 

In addition to accuracy, the model's processing time was evaluated to meet the KPI's detection time requirement 
of <100 ms. Figure 45 presents the distribution of the required processing time, broken down into 'Data 
Preprocessing Time', 'Inference Time', and 'Total Time'. The results demonstrate that the Total Time for 
detection is consistently and significantly below the 100 ms KPI target. This efficiency confirms the model's 
suitability for real-time or near-real-time operation, thereby satisfying the second condition of the RG-KPI. 

Achievement Level: ++ 

Testbeds/Simulators used: TB-R-2 
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Figure 44: Performance comparison of Machine Learning models for jamming attack detection. 

 
Figure 45: Distribution of online detection timing, including Data Preprocessing, Inference, and Total Time. 

4.7 5G Network Management 

The 5G network management identified a set of 4 requirements that relate to RG-KPI 7.1. The following section 
identifies the work done to achieve this RG-KPI according to each requirement that links to it. 
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4.7.1 RG-KPI 7.1: Latency is improved with the autonomic changes in the connectivity path between two 
or more interacting application components (core network NF)14 

In the scope of R7.1 (Automate the deployment and configuration of the Network Function (NF) User Plane 
Functions (UPFs) at the edge (as a VM or container according to the core network implementation), providing 
a 5G network and edge datacentre with resource inventory capabilities), we thoroughly explored multiple 
strategies to address the RG-KPI 7.1 effectively. The first hypothesis we considered involved having the target 
datacentres without pre-deployed UPFs, with the intention of deploying UPFs on demand. However, this 
approach presented significant limitations: it would not allow us to gather parameters related to the resource 
consumption of the UPF itself, which is critical for accurate evaluation by the machine learning algorithm. 
Additionally, we assessed this scenario as unrealistic in practical terms, as Operators typically have edge UPFs 
already in place to maintain seamless network function and performance. 

Given these limitations, we shifted our focus to a second hypothesis, which entailed configuring the UPF by 
utilising network slicing capabilities. Through this approach, we not only satisfied the requirement but also 
enabled continuous monitoring of resource inventory capabilities via an integrated agent. This configuration 
automatically implemented a 5G network slicing setup as outlined in requirement R7.4, ensuring adaptability 
and resource efficiency across the network. This second approach offers the significant advantage of being 
future proof, as most metrics collected by our implemented agent are aligned with 3GPP specifications for 
counters in the 5G Standalone (SA) core network. Although most vendors have yet to implement these counters 
fully, having the UPFs pre-deployed enables future utilisation of these 3GPP-defined counters as they become 
available. This foresight ensures that our system can readily adapt to forthcoming industry standards and vendor 
implementations, enhancing both compatibility and network observability over time. 

Regarding the UPF switch, along with its data path change (R7.2: Changes to the 5G core network led to zero 
or very small downtime), we achieved it by modifying the network slice allocated to the end user. Following 
this modification, we issued a detach request to the User Equipment (UE) to prompt the use of the newly 
configured slice. Currently, Athonet does not implement the "re-attach required" cause, meaning we must rely 
on the UE to initiate a new connection. 

To manage this, we utilised a Teltonika device, leveraging the ability to check the connection status every 
minute and reestablish it if a connection is unavailable. This approach effectively minimised downtime, keeping 
it below one minute. 

We investigated this area by deliberately selecting the network-initiated deregistration (detach) request as the 
preferred mechanism to manage UE compatibility issues in multi-slice scenarios. This choice was driven by the 
current limited maturity of commercial UEs in supporting simultaneous or dynamic handling of multiple 5G 
network slices, which was observed to be inconsistent and often vendor dependent. Based on the procedures 
defined in Section 5.5.2.3.4 of 3GPP TS 24.501, we analysed the use of deregistration requests—specifically 
those requiring re-registration—as a controlled and deterministic method to enforce slice re-selection by the 
UE. By explicitly modifying the allowed slice configuration and triggering a detach, the UE is forced to re-
attach to the network under updated slice selection conditions, effectively compensating for the immature multi-
slice capabilities currently exhibited by UEs. 

In the scope of R7.3 (Identify metrics from the 5G network and infrastructure data of available nodes in the 
continuum for target deployment to place the local data breakout for User Plane traffic optimally), we identified 

 
14 The original KPI referred, as an example, to the latency between Milan and London. In our environment, considering 
the existing latency conditions, we achieved an improvement of approximately 10 ms by taking into account a UPF 
deployment located within a territory such as Italy. 
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all the necessary metrics. We designed an agent to retrieve them directly from the network. Initially, we 
considered using metrics specified by 3GPP standards from the core network; however, we opted to deploy an 
external agent instead. This decision was driven by the fact that many core network vendors have not yet 
implemented these counters, making an external agent a more immediate and reliable solution. This approach 
allowed us to ensure comprehensive data collection without dependency on vendor-specific implementations, 
enhancing the consistency and accuracy of our monitoring capabilities. 

Regarding the dynamic adjustment of the network slice allocated to the UE, related to R7.4 (Enable gNBs to be 
connected to a non-co-located, centralised UPF and switch among UPFs if ML models deem this to offer better 
performance), we developed, as outlined above, an API to interface with the Athonet core network, specifically 
targeting the Session Management Function (SMF). This approach effectively triggers a change in the data path 
within the user plane, which then aligns with the UPF designated in the network slice configuration. 
Additionally, using the same API, we issue a detach request to the UE, prompting it to reconnect to the network 
and thereby refresh its network slice configuration as specified (also refer to requirement R7.2). This process 
ensures seamless adaptability in data path routing and enhances alignment with network slice configurations. 

 
Figure 46: Improvement of 10 ms in user experience. 

These developments allowed us to achieve a reduced local data breakout latency successfully, and the RG-KPI 
has been verified. Figure 46 shows an improvement of 10 ms in user experience.  

Achievement Level: ++ 

Testbeds/Simulators used: TB-R-1 

4.8 Optical Networking in the Datacentre  

The following are the RG-KPIs for the optical network functionality within MLSysOps: 
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4.8.1 RG-KPI 8.1: The network management policy dynamically switches between at least two network 
topologies (Fat-Tree, 3D-Torus) depending on the arriving workload mix, excluding switching layers 
that are not required and switching off the relevant devices. 

The network management algorithms have been developed, and the topology shift has been carried out for 
different mixtures of computations. Initially, the algorithms were verified in a simulation that used exact models. 
The simulator was extended with datacentre-in-the-loop capability, where the algorithms configure a small-
scale cluster instead of the simulated cluster design. The jobs are launched and retired by leveraging the Slurm 
job scheduler, and an appropriate service handles the configuration of Optical Circuit Switches. As a result, 
packet switches that are excluded are switched off.  

Achievement level: ++ 

Testbeds/Simulators used: TB-R-3 

4.8.2 RG-KPI 8.2: The network management policy dynamically changes at least one parameter of the 
physical network (e.g., bandwidth steering) (R8.1). 

The Bandwidth Steering approach is demonstrated directly in the real small-scale datacentre setup and not in 
simulation mode. The reason is that it requires the Adaptive Routing functionality of the Infiniband transport to 
take advantage of making available multiple physical paths towards the same destination. Therefore, this 
functionality is not simulated but directly demonstrated by our “full bisection bandwidth” algorithm that extends 
allocation of lanes to remove bandwidth tapering that is introduced by physical topology when it is required by 
the application. 

Achievement status: ++ 

Testbeds/Simulators used:  TB-R-3 

4.8.3 RG-KPI 8.3: Use at most 2 switching layers to execute application workloads involving Deep 
Learning Recommendation Models (DRLM) and Large Language Models (LLM). (R8.1, R8.2) 

For the current characterized workload mix, which consists of both DLRM and LLM, the simulations show that 
every communication path runs with at most 2 switching layers. We have extended our simulations to cover the 
most demanding collective operation (i.e., all-to-all) that underpins any modern AI workload. We managed to 
use at most 2 switching layers for this one by leveraging a ring-based all-to-all algorithm. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-3 

4.8.4 RG-KPI 8.4: The network power consumption is reduced by 30% due to the power down of the 
network elements of the bypassed layer. (R8.1) 

Proven by simulation by counting the number of packet switch devices that are replaced by the OCS switches 
and factoring in the power consumption difference of each device class (packet switches rate ~2000 W while 
OCS switches only 12W). The simulation provides detailed savings, which depend on the placement algorithms 
used. We exceeded the goal of reducing 30% the network power consumption and still achieved the same 
performance for a variety of workloads by removing the spine core layer of the network and replacing it with 
an optical switch core network that connects leaf switches. That leads to removing 60% of the switches from 
the network core and replacing them with the very low power optical counterparts, which reduces network 
power to 60% which is well beyond the original goal. 

Achievement level: ++ 
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Testbeds/Simulators used:  TB-R-3 

4.8.5 RG-KPI 8.5: The network port-to-port latency is reduced by 25% with the use of a switching layer 
bypass. (R8.1, R8.2) 

A latency study has been carried out, but at the transport level, the results did not make any important difference, 
at least for Infiniband transport. We found that each switching layer introduces 400 ns RTT latency in the path. 
In full-fat tree topologies, the worst case, paths that go through the core will result in 3 switching layer crossings 
that account for 1.2 µs. With OCS, we only have one switching layer plus 50 ns for the optical switch. In other 
words, the network NIC port-to-NIC port latency improvement offered by OCS-enabled topologies ranges from 
a factor of 2x-3x. Nevertheless, we found that packet networks like InfiniBand are designed to hide latencies of 
several microseconds, so the described benefit is not really reflected in the transport performance and to the 
application after all, despite that is there. We expect that memory bus-type connections like NVLink will exhibit 
better performance using OCS-based topologies because it is very latency sensitive, but this fabric investigation 
could not be carried out by our simulator and our testbed.    

Achievement level: + 

Testbeds/Simulators used:  TB-R-3 

4.8.6 RG-KPI 8.6: Arriving workloads are expected to be 100% accommodated (job scheduling and 
topology reconfiguration on an AI Cluster) based on the decisions generated by the MLSysOps 
framework. (R8.1, R8.2) 

To ensure that arriving workloads are fully accommodated, an ML-based prediction mechanism was developed 
to support informed job scheduling and topology-aware resource management. The machine learning model 
was trained using ground-truth data generated with an NVIDIA proprietary simulator, which was used to model 
realistic cluster and network behaviour. At runtime, the model consumes the current cluster state and predicts 
whether an incoming job can be successfully placed and executed immediately, with particular emphasis on 
network-related resources whose availability is not deterministic prior to job placement, such as the optical 
uplinks required for inter-node communication. Based on these predictions, the scheduling decisions made by 
the MLSysOps framework dynamically adjust the execution order of incoming jobs, deferring those that are 
unlikely to be accommodated at the current time while prioritizing jobs that can be executed with the available 
resources. This predictive, feedback-driven scheduling approach reduces the time jobs spend waiting in the 
queue due to temporary resource unavailability. 

Achievement status: ++ 

Testbeds/Simulators used:  SIM-4 

4.9 Energy-efficient and Green Computing in Datacentres  

Work is currently being done on the development of ML-based policies for tackling node/VM management and 
task placement/migration within a datacentre. Model training and evaluation are performed using a simulated 
system via the CloudSim/CloudSimPlus simulators (with some extensions; see D4.3 “Final Version of System 
Simulators”), while the workload is generated based on public traces. At this point, the optimisation target is to 
reduce the number of active servers, save energy, reduce the number of migrations, and reduce the cost of SLA 
violations, thereby also reducing the cost of operation for the datacentre provider.  

In the third year of the project, we investigated continuum-level scheduling to support task placement and 
management over multiple datacentres with different energy profiles; the energy consumed in each datacentre / 
each time period has a different carbon intensity depending on the mix of brown and green energy being 
produced in the given country or geographical location.    
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4.9.1 RG-KPI 9.115: Implement carbon-aware orchestration that dynamically adapts to spatio-temporal 
variations in carbon intensity 

 We have validated the capability to exploit available green energy through the CLEAR-global ML-based 
policy. Specifically, CLEAR-global extends the CLEAR reinforcement learning model by expanding the action 
space to include cross-region placement decisions. The policy integrates spatio-temporal carbon intensity 
signals and inter-region network latency directly into its reward formulation. This allows the agent to 
dynamically route function invocations to geographical regions with "greener" energy grids, effectively trading 
off calculated network delays for significant reductions in carbon emissions. Evaluation on real-world traces 
confirms the system successfully shifts consumption to "greener" time windows and regions, achieving a 14.9% 
reduction in total carbon emissions. 

 
Figure 47: Temporal distribution of keep-alive durations by CLEAR. Longer durations are favoured during low-

carbon hours, reflecting carbon-aware adaptation. 

 
This exploitation is also quantitatively demonstrated by the agent's learned behaviour as depicted in Figure 47 
during low-carbon hours (e.g., 08:00–12:00), the system automatically prioritizes resource-intensive actions 
(selecting longer keep-alive durations like 60s) to maximize utility when green energy is available. Conversely, 
during peak carbon intensity, it shifts to shorter durations to minimize brown energy waste. This temporal and 
spatial shifting confirms that the mechanism for maximizing green energy usage is fully operational. 

Achievement status: ++ 

Testbed used: SIM-2 

4.9.2 RG-KPI 9.2 Achieve operators’ costs within 5% of those of adaptive, non-ML state-of-the-art policies 

Our evaluation demonstrates that the ML-based policies achieve operational efficiencies that match or exceed 
state-of-the-art heuristics. PeakLife was compared against the Local Regression Minimum Migration 

 
15 RG-KPI 9.1 has been reformulated from “Exploit at least 75% of the green energy available to datacentres” to 
“Implement carbon-aware orchestration that dynamically adapts to spatio-temporal variations in carbon intensity”. The 
original formulation refers to a metric and threshold which is hard/unrealistic to quantify given that datacentres are not 
connected to separate Green and Brown power supply sources but draw whichever energy is available from the grid. What 
varies (in time and by location) is the mix of Green and Brown energy sources used in electricity production. The new KPI 
captures this aspect in a clearer way and focuses on the capability developed in the project (spatio-temporal adaptation).  
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(LRMMT16) heuristic. PeakLife reduced the average number of migrations (a key operational cost driver) to 
1,050 compared to 1,484 for LRMMT, a reduction of ~29% while simultaneously lowering SLO violations. 
Additionally, the CLEAR framework was compared against a state-of-the-art Dynamic PSO-based (DPSO17) 
metaheuristic. CLEAR achieved comparable total carbon emissions (407,19g CO2 vs 395,12g CO2) but with 
significantly better responsiveness (17.85 s latency vs 23.40 s). Moreover, CLEAR's inference overhead was 
4600x faster than DPSO (0.96 s vs 4.52 s for the workload), making it a far more cost-effective solution for 
real-time deployment. 

Achievement status: ++ 

Testbed used: SIM-2 

4.10 Machine Learning 

The ML functionality in MLSysOps is delivered via the MLConnector. This manages the full ML model 
lifecycle, from search and discovery of models, requesting the activation of an ML model (leading to the 
deployment of the corresponding containerised model), to invoking the ML model and requesting its 
deactivation (leading to the removal of the respective container). This design ensures that ML models are cleanly 
decoupled from the agents that utilise these models, which allows agents to switch between different ML models 
flexibly at runtime.  

4.10.1 RG-KPI 10.1: At least two different models are used interchangeably without modifying the 
underlying resource management and configuration mechanisms.  

The containerized deployment of ML services through the usual deployment path of MLSysOps ensures we can 
deploy multiple models without modifying the underlying resource management and configuration mechanisms. 
The dynamic model engagement and invocation are supported via the ML Connector, and the dynamic change 
between different ML models has been tested without issues, using 2 different versions (with minor changes) 
of the ML models developed for each use case.  

Achievement level: ++ 

Testbed used: TB-R-5 

4.10.2 RG-KPI 10.218: The effectiveness of continual learning shall improve system performance whenever 
model drifting is detected (i.e., it should at least bring the system to the performance levels before 
model drifting). 

We have designed and implemented efficient state representations for Deep Reinforcement Learning (DRL) 
agents managing VMs in cloud systems, focusing on faster and more robust training. After exploring the state-
of-the-art (autoencoders, VQ-VAE, and graph embeddings), we employ advanced representation learning and 

 
16 Anton Beloglazov, Jemal Abawajy, and Rajkumar Buyya. 2012. Energy-aware resource allocation heuristics for efficient 
management of data centres for cloud computing. Future generation computer systems 28, 5 (2012), 755–768. 
17 Y. Jiang, R. B. Roy, B. Li, and D. Tiwari, “Ecolife: Carbon-aware serverless function scheduling for sustainable 
computing,” in SC24: International Conference for High Performance Computing, Networking, Storage and Analysis. 
IEEE, 2024, pp. 1–15. 
18 RG-KPI 10.2 has been reformulated from “The effectiveness of continual learning shall improve system performance 
whenever model drifting is detected.” to “The effectiveness of continual learning shall improve system performance 
whenever model drifting is detected (i.e., it should at least bring the system to the performance levels before model 
drifting)”. This reformulation was done to clarify the metric used for evaluation. 
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feature extraction techniques to compress states into powerful latent representations. These dimensionality 
reduction methods create compact yet meaningful views of the environment, reducing the computational 
complexity of the state space and significantly accelerating training while preserving performance. Our 
approach incorporates domain adaptation and knowledge transfer, allowing agents to adapt to environments 
with varying infrastructure sizes. By leveraging knowledge distillation and domain transfer strategies, we ensure 
that agents retain and reuse knowledge efficiently across dynamic cloud systems, fostering adaptability and 
scalability. This approach was tested for VM job allocation using CloudSim. However, the approach is 
applicable to other mechanisms. 

Achievement level: ++ 

Testbed used: SIM-2 

4.10.3 RG-KPI 10.3: Performance isolation will be achieved between the running application and the ML 
model (training/inference). Application QoS targets are met, although resources are used for 
applications and model re-training / continual learning mechanisms. 

When an agent activates an ML model through the MLConnector, the model is deployed as a special 
containerised application that exposes a REST endpoint used for inference. This way, ML inference is decoupled 
from the agent and application execution while exploiting the flexible deployment capability of the MLSysOps 
framework. The same approach was followed for the model drift detection and training processes. Support for 
scheduling the inference and training processes so as not to impact application performance was completed 
during the third year of the project.   

Achievement level: ++ 

Testbed used: TB-R-5 

4.10.4 RG-KPI 10.419: Explanation mechanisms provide sufficient justifications in terms of feature 
importance for decisions made by an ML-based mechanism. 

To enhance the transparency and interpretability of the model’s actions, we utilise two powerful model-agnostic 
explainable methods: Local Interpretable Model-Agnostic Explanations (LIME20) and SHapley Additive 
exPlanations (SHAP21). These methods provide complementary insights into model decisions, with LIME 
focusing on local interpretability for individual predictions and SHAP offering global interpretability to assess 
the contribution of each feature across the entire dataset. These explainability mechanisms are integrated with 
the MLConnector.  

Achievement level: ++ 

Testbed used: TB-R-5 

 
19 RG-KPI 10.4 has been reformulated from “Explanation mechanisms provide sufficient justifications for every decision 
made by an ML-based mechanism” to “Explanation mechanisms provide sufficient justifications in terms of feature 
importance for decisions made by an ML-based mechanism”. This reformulation was done to clarify the metric used for 
evaluation. 

20 Ribeiro, M.T., Singh, S. and Guestrin, C., 2016, August. " Why should I trust you?" Explaining the predictions of any classifier. 
In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144). 

21 Scott M. Lundberg and Su-In Lee. 2017. A unified approach to interpreting model predictions. In Proceedings of the 31st 
International Conference on Neural Information Processing Systems (NIPS'17). Curran Associates Inc., Red Hook, NY, USA, 
4768–4777. 
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4.10.5 RG-KPI 10.5: System and running applications continue working even when ML-driven decision-
making is deactivated.  

ML solutions are provided to agents via the MLConnector. This solution is decoupled from the rest of the 
application, ensuring that applications continue working even when ML-driven decision-making is deactivated, 
using conventional (e.g., rule-based) policies instead. The ability of agents to switch between ML-based and 
conventional operations has been tested using the ML models developed for the application use cases without 
issues. 

Achievement level: ++ 

Testbed used: TB-R-5 

4.10.6 RG-KPI 10.622: All relevant telemetry data is successfully captured and processed using data-centric 
AI techniques to produce summaries of good quality (i.e., the resulting quality will not negatively 
affect model performance) that can be used as experience memory and made available for further 
analysis or utilisation.  

The efficient state representations we developed for managing VMs in cloud systems employ data-centric AI 
techniques by collecting and storing useful data samples that are integral to the retraining of the agents. Although 
the collected information is state-specific, states are represented in a generalizable and transferable tree structure 
that makes them useful for retraining agents in different state-spaces. For example, once an agent is trained to 
assign VMs to a datacentre of 10 hosts, data collected whenever the agent is in the observation phase, are 
recorded using the representation tree we proposed to be used when the number of the hosts change.  This 
approach is generalizable to other use-cases since we proposed a generic algorithm for defining the 
representation tree. 

The UTH research testbed, comprising a diverse set of platforms and connectivity technologies—including RPi 
Jetson device, datacentre servers, and workstations, interconnected via 4G, Wi-Fi, and Ethernet—provided a 
wide range of real telemetry data and supported the execution of heterogeneous workloads. This diversity 
proved invaluable for experimenting with and developing ML models for system-level management decisions, 
enabling realistic system characterization and modelling.  

Testbed used: TB-R-5, SIM-2 

Achievement level: ++  

 
22 RG-KPI 10.6 has been reformulated from “Explanation All of the relevant telemetry data is successfully captured and 
processed, using data-centric AI techniques, to produce summaries of good quality that can be used as experience memory 
and be made available for further analysis or utilization.” to “All relevant telemetry data is successfully captured and 
processed using data-centric AI techniques to produce summaries of good quality (i.e., the resulting quality will not 
negatively affect model performance) that can be used as experience memory and made available for further analysis or 
utilisation”. This reformulation was done to clarify the metric used for evaluation. 
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5 Evaluation vs Project Level KPIs 
This section outlines the evaluation status of the project KPIs identified for MLSysOps in the project proposal. 
The information is organised in the same structure as in Section 4, with a sub-section for each project objective 
and its corresponding KPIs. For each KPI, we provide a summary of the work done to achieve it and indicate 
the current level of achievement: "o" for not achieved, "+" for partially achieved, and "++" for fully achieved 
(adopting the same notation that was already used in Section 4). The testbeds and simulators are presented using 
identifiers that can be mapped to the corresponding descriptions provided in Appendix A. 

5.1 Deliver An Open AI-ready, Agent-based Framework for Holistic, Trustworthy, Scalable, 
and Adaptive System Operation Across the Heterogeneous Cloud-Edge Continuum 

5.1.1 P-KPI 1.1 At least 2 real-world applications transparently combine services from cloud and edge 
layers and/or different infrastructure providers 

The Smart Agriculture use-case combines edge and cloud services through the MLSysOps framework. 
Application components for weed detection and drone control are executed on edge nodes deployed on the 
tractor and a drone. At the same time, system monitoring, orchestration, and decision-making logic are handled 
by MLSysOps agents operating on the physical nodes as well as at the cluster and continuum levels on cloud-
hosted VMs (Google). The system integrates the edge and cloud layers through a continuous telemetry exchange 
and remote control, reflecting the operating conditions at runtime. This integration has been validated through 
real-field experiments using real hardware, confirming end-to-end operation across the system’s infrastructure. 

Similarly, the Smart City use-case demonstrates this capability by orchestrating services across a heterogeneous 
edge-datacentre continuum in two distinct real-world testbeds. The application components for noise sensing 
and image processing execute on diverse edge nodes (Nvidia Jetson devices) located in both a private 
infrastructure (UBIW headquarters) and a public city environment (Aveiro city centre). These edge services are 
transparently combined with orchestration, decision-making agents, and telemetry aggregation hosted on 
virtualized infrastructure within UBIW’s local datacentre. The system seamlessly manages the interplay 
between local edge activation logic and centralized datacentre monitoring, validating the framework's ability to 
unify services across geographically distributed infrastructure layers and distinct operational domains (private 
vs. public). 

Achievement level: ++ 

Testbeds/Simulators used: TB-APP-1, TB-APP-2 

5.1.2  P-KPI 1.2 Deployment and orchestration on at least 4 families of devices spanning from cloud to 
Far-Edge 

Tests have been performed to confirm the proper deployment and orchestration of application components on 
the following types of nodes/devices: VMs (on typical cloud-class servers), workstations, Jetson, RPi, FPGA 
SoC (standalone Smart-Edge nodes), and Arm-M4 microcontroller devices (Far-Edge nodes). 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-6, TB-R-7 
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5.1.3 P-KPI 1.3 Support for at least 2 different cloud/edge resource provisioning /allocation/orchestration 
frameworks 

Tests have been performed to confirm the proper operation of the framework, interfaced with Karmada at the 
continuum level and with Kubernetes at the cluster level, to support the flexible deployment and orchestration 
of distributed applications based on the formal application description both across and within clusters. The 
MLSysOps framework is based on generic containers, rendering the system compatible with any orchestration 
framework that supports containers. Consequently, while Karmada and Kubernetes (K8s/K3s) constitute the 
preferred deployment framework, Docker Swarm remains a supported alternative for cluster and node agents. 
Moreover, we have implemented interfaces to Amazon Web Services enabling the integration of public cloud 
infrastructure to the resource slices available to MLSysOps-supported applications. 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5, TB-R-6 

5.1.4 P-KPI 1.4 Support at least 2 AI policies for any managed resource without changes to the 
management mechanisms 

Different ML-based policies have been developed for various management aspects. The ability to employ 
different ML models without changing the underlying mechanisms is one of the key design features of the 
MLSysOps framework. This has been confirmed experimentally through agents that dynamically activate and 
invoke different proxy ML models via the MLConnector, also offering the option to switch between ML-based 
and conventional heuristic-based operations at the cluster level.  

Achievement level: ++ 

Testbed used: SIM-2, TB-R-5 

5.1.5 P-KPI 1.5 Support systems with at least 250 nodes across the continuum (validated through 
simulation) 

The real-world application use cases and the research testbeds only have a few physical nodes. Additional nodes 
can be emulated using VMs on server machines and workstations (see drone simulation environment of UTH). 
Truly large-scale experiments will be performed using system simulators such as CloudSim (UTH), 
CloudSimPlus (UCD), and EdgeCloudSim (UNICAL). At this point, initial simulations are being performed 
focusing on datacentres and edge-based systems; with EdgeCloudSim we setup simulations with up to 1000 
mobile nodes, about 30 edge datacentres/5G Base Stations, and 1 cloud datacentre. On CloudSim, we have 
worked with datacentres with 320 server nodes, and on CloudSimPlus, initial experiments include 1 cloud 
datacentre with up to 32 hosts. Last, we supported cross-datacentre management/task scheduling, where the 
scale is expected to reach the planned target.   

Achievement level: ++ 

Testbeds/simulators used: SIM-1, SIM-2 

5.1.6 P-KPI 1.6 Sufficiently lightweight agent implementation, targeting memory-limited (less than 1GB) 
Smart-Edge devices and agent coordination overhead of less than 10% of application data traffic 

The current implementation of the MLSysOps agents is relying on the SPADE framework. It has been further 
containerized and Kubernetes-enabled to ensure reproducible and scalable deployment across the Cloud–Edge 
Computing Continuum. All agents are deployed as DaemonSets, allowing a consistent presence at the node, 
cluster, and continuum levels, while maintaining a lightweight runtime footprint suitable for resource-
constrained environments. 
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The memory footprint of the agents was experimentally evaluated using memory usage values reported by the 
Kubernetes kubelet for each MLSysOps agent pod. These values are based on container-level memory usage 
derived from Linux control groups (cgroups). Measurements were collected during steady-state operation across 
the different continuum layers. 

As shown in Table 9, the continuum-level agent deployed on a cloud VM exhibits a memory usage of 
approximately 154.56 MB, confirming that global coordination functionality can be supported with a modest 
memory footprint. 

At the cluster level, MLSysOps cluster agents deployed on different clusters demonstrate memory footprints of 
approximately 199.34 MB (cluster clus2) and 151.22 MB (cluster clus1). These results indicate that cluster-
level coordination logic remains lightweight, even when managing multiple node-level agents.  

At the node level, MLSysOps agents deployed on individual Smart-Edge nodes show memory consumption 
values ranging from 143.36 MB to 221.29 MB, depending on the node platform and workload characteristics. 
Specifically, measured footprints include 143.36 MB (Raspberry Pi 4), 178.58 MB (Jetson Nano), and 221.29 
MB (Raspberry Pi 3). All values remain well below the 1 GB memory constraint typically associated with 
memory-limited Smart-Edge devices, demonstrating that node-level intelligence can be executed efficiently 
within containerized environments. 

Regarding coordination overhead, agent communication remains minimal across all layers, on the order of a 
few kB/s. This traffic mainly consists of heartbeats, telemetry updates, and status notifications exchanged 
between node-level and cluster-level agents.  The relative impact of this coordination overhead depends on the 
specific application traffic requirements: for data-intensive applications, it is negligible, whereas for 
applications generating little or no traffic, the coordination overhead will naturally dominate. 

Table 9 Memory footprint of MLSysOps agents across the Cloud–Edge continuum 

Agent Name Node Type 
Memory 

(MB) 
Continuum cloudvm VM 154.56 

Cluster clus1 VM 151.22 
Node n-node Jetson Nano 178.58 
Node r3-node Raspberry Pi 3 221.29 

Cluster clus2 VM 199.34 
Node r4node Raspberry Pi 4 143.36 

 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-4 

5.2 Develop an AI Architecture Supporting Explainable, Efficiently Retrainable ML Models 
for End-To-End Autonomic System Operation in the Cloud-Edge Continuum 
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5.2.1 P-KPI 2.1 Explainable ML models with decision quality within 5% of traditional state-of-the-art 
resource management algorithms. 

Explainability mechanisms are provided via two powerful model-agnostic explainable methods: Local 
Interpretable Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP). This approach 
is generalizable to any ML model. Several models have been developed, and results show that they perform 
better than state-of-the-art solutions. With the use of the MLConnector, other mechanisms can integrate 
explainability and measure the impact of the ML model and the quality of decisions made.  

Achievement level: ++ 

Testbed used: TB-R-5 

5.2.2 P-KPI 2.223 Eliminate the effect of model drifting without any perceivable reduction (less than or 
equal to 1%) in the QoS of applications in the presence of system slack. & P-KPI 2.3 Reduce the 
effect of model drifting at a QoS penalty of less than 5% for running applications in the presence of 
resource pressure. 

Given the identical strategies employed for P-KPI 2.2 and P-KPI 2.3, their status analysis has been consolidated. 

We have implemented an approach based on Deep RL that incorporates domain adaptation and knowledge 
transfer, allowing agents to adapt to environments with varying infrastructure sizes. By leveraging knowledge 
distillation and domain transfer strategies, we ensure that agents retain and reuse knowledge efficiently across 
dynamic cloud systems, fostering adaptability and scalability and hence reducing the effect of model drift. This 
approach is tested for VM job allocation using CloudSim+. However,, it can be generalized to other mechanisms 
and platforms. The developed Deep RL-based agents were trained with QoS metrics as baselines in order to 
make sure that there is no significant QoS penalty (i.e., more than 5%). 

Achievement level: ++ 

Testbed used: SIM-2 

5.3 Enable Efficient, Flexible, and Isolated Execution Across the Heterogeneous Continuum 

5.3.1 P-KPI 3.124 Package and deploy in the continuum applications consisting of at least 10 components, 
transparently and on-demand, targeting 4 execution enclaves (VMs, microVMs, unikernels, 
containers) at comparable latency with state-of-the-art standalone enclave generation methods 

 
23 P-KPI 2.2 has been reformulated from “Eliminate the effect of model drifting without any perceivable reduction in the 
QoS of applications in the presence of system slack” to “Eliminate the effect of model drifting without any perceivable 
reduction (less or equal to 1%) in the QoS of applications in the presence of system slack”. This reformulation was done 
to clarify the metric used for evaluation. 
24 P-KPI 3.1 has been reformulated from “Package and deploy in the continuum applications consisting of at least 10 
components, transparently and on-demand targeting 4 different execution enclaves Virtual Machines (VM), microVMs, 
unikernels, containers, at comparable latency with state-of-the-art standalone enclave generation methods” to “Package 
and deploy in the continuum applications consisting of at least 10 components, transparently and on-demand, targeting 4 
execution enclaves (VMs, microVMs, unikernels, containers) at comparable latency with state-of-the-art standalone 
enclave generation methods (package should not exceed 60% of the generic packaging time and deployment should not 
exceed 10% of the generic deployment time)”. This reformulation was done to clarify the metric used for evaluation. 
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(package should not exceed 60% of the generic packaging time and deployment should not exceed 
10% of the generic deployment time). 

We use cloud-native tools for packaging applications into OCI images and deploy these images using open-
source container runtimes (where we actively contribute with code and maintenance effort) that allow 
sandboxing applications into microVMs. In addition, we built two components that extend this functionality to 
more exotic execution environments, such as unikernels: (a) bima, a packaging tool that builds an OCI image 
from a unikernel binary, along with specific annotations that facilitate its deployment, (b) urunc, a lightweight 
container runtime, CRI-compatible (k8s), able to spawn unikernels. Preliminary numbers show a 30% decrease 
in spawn/tear-down time of a container compared to generic container runtimes (runc) and more than 2x speed-
up compared to sandboxed container runtimes (kata-containers). Detailed performance measurements are 
reported in D3.3. 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5, TB-R-6 

5.3.2 P-KPI 3.225 Support Arm Cortex-M family devices as legitimate application deployment and resource 
orchestration targets. 

The mechanisms that introduce Far-Edge devices as legitimate resources for deployment and resource 
orchestration are developed (details on “D3.3 Final Version of AI-ready MLSysOps Framework”) and have 
also been successfully tested through the current integrated version of the framework. They support the Arm 
Cortex-M family, namely Kallisto, an Arm Cortex-M4 low-power device.  

Achievement level: ++ 

Testbeds/Simulators used: TB-R-5, TB-R-7 

5.3.3 P-KPI 3.3 Support resource-constrained devices (Class 1 as defined by IETF RFC 7228) over 
constrained networks (as defined by IETF RFC 7228) and reduce reprogramming time by at least 
20% compared to a full firmware update. 

The minimum compatibility for embServe (Far-Edge framework for application component deployment) with 
support for indicative application components is class 3 resource-constrained devices. There is a trade-off 
between the support for Class 1 resource-constrained devices and the functionality and complexity of the 
application components supported by embServe and the Far-Edge devices. We opted for functionality and 
complexity while still supporting resource-constrained devices, according to IETF RFC 7228.  

With embServe, we have reduced the Far-Edge nodes' reprogramming time by 99% compared to the full 
firmware update26 (0.109s for application component deployment vs 27.72s for full firmware update) using Wi-
Fi. When considering resource-constrained networks, specifically 6LowPan, we have also reduced the 

 
25 P-KPI 3.3 has been reformulated from “Support Advanced Reduced Instruction Set Computer (RISC) Machine (Arm) 
Cortex-M family devices as legitimate targets for application deployment and resource orchestration” to “Support Arm 
Cortex-M family devices as legitimate application deployment and resource orchestration targets”. This reformulation was 
done to correct the KPI specification, which incorrectly associated two different HW architectures (RISC and Arm) with a 
family of devices that is Arm-based. 
26 J. Oliveira, F. Sousa and L. Almeida, "embServe: Embedded Services for Constrained Devices," 2023 IEEE 19th 
International Conference on Factory Communication Systems (WFCS), Pavia, Italy, 2023, pp. 1-8, Doi: 
10.1109/WFCS57264.2023.10144123 
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reprogramming time by 99% compared to the full firmware update (1.048s for application component 
deployment vs 502s for full firmware update). 

Achievement level: ++ 

Testbeds/Simulators used: TB-R-7 

5.3.4 P-KPI 3.4 Enable the use of at least three (3) execution devices (cloud GPU accelerators, edge CPUs, 
edge GPU accelerators) by a single application binary. 

We build and enhance vAccel, a hardware acceleration framework that enables the decoupling of function calls 
from their respective hardware-specific implementations. To this end, we enable compute-intensive functions 
(e.g., OpenCV’s Optical Flow) to be executed on diverse hardware accelerators using vAccel. Using the vAccel 
API, the application can transparently perform an optical flow operation with (a) no acceleration (CPU only), 
(b) GPU-enabled acceleration (CUDA, NVIDIA RTX), (c) edge GPU acceleration (CUDA, NVIDIA Jetson 
Orin AGX). 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-6  

5.4 Support Green, Resource-Efficient, and Trustworthy System Operation while Satisfying 
Application QoS/QoE Requirements 

5.4.1 P-KPI 4.1 Reduce the IT energy footprint of 2 real-world use cases by at least 20%. 

For the Smart Agriculture use-case, the MLSysOps framework improves energy-related efficiency by 
dynamically controlling drone engagement based on predicted weed-detection performance. Energy 
consumption was approximated using the flight time of the drone. Evaluation based on field experiments shows 
that the ML-based engagement policy can strongly reduce unnecessary drone flight time compared to an always-
on approach while maintaining almost as good application performance. 

In the specific evaluation session, the ML-based engagement policy reduces the drone's energy consumption by 
approximately 13%. If the entire day is considered, this reduction will increase to over 86% (since the ML-
model will make sure the drone is passive when it's unneeded). The exact savings depend on various 
unpredictable factors such as the field’s dimensions, and the tractor’s speed. 

For the Smart City use-case, the MLSysOps framework enables energy-related efficiency gains by dynamically 
managing the power state of the Computer Vision (CV) component on smart lampposts. Measured via real-time 
node telemetry, the performance results vary significantly based on the deployment context. In the private 
testbed, the framework achieved average energy savings of ~21%, with peak reductions reaching the theoretical 
hardware limit of 40%. In the public testbed (City Centre), the system prioritized safety-critical reliability, 
resulting in more conservative energy savings of ~3-5% to ensure a near-perfect capture rate of >99%, validating 
the framework's ability to adapt its energy-saving to the high traffic profile of the urban environment. 

Achievement level: + 

Testbeds/Simulators used:  TB-APP-1, TB-APP-2  
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5.4.2 P-KPI 4.227 Reduce the total operational carbon footprint of cloud/edge workloads by at least 15% 
compared to standard baselines. 

The CLEAR-global policy reduced total carbon emissions by 14.9% (reaching 85.1% of the baseline) by 
exploiting cross-region green energy availability. The PeakLife policy reduced unnecessary VM migrations by 
41.33%, directly lowering the operational energy and carbon overhead associated with inefficient resource 
management. The combined effect of these policies quantitatively meets the target reduction.  

Achievement level: ++ 

Testbeds/simulators used: SIM-2, TB-R-5 

5.4.3 P-KPI 4.328 Reduce network power consumption by 30% by exploiting optical circuit switching, 
which reduces the required number of power-hungry electrical packet switches without introducing 
oversubscribed or longer network paths that can affect application performance. 

MLNX OCS-based network cluster simulations have shown that large-scale communication collective 
operations (e.g., all-reduce, scatter-all-gather, etc.), which underpin the AI training large-scale communications 
on AI clusters, can be flexibly supported by only a leaf layer of packet switches without either the spine or core 
layers of Fat tree. The approach leverages optical switches to interconnect the leaf-layer packet switches 
dynamically, so the final physical topology reflects the application connectivity requirements. Managing to 
remove the core layer of packet switches as well to support the main collective operation of all-to-all reduces 
the overall power consumption by more than 30%. To provide a quick example, in the mainstream topology of 
a full-fat tree, we need 1024 packet switches at the core layer, 2048 for the spine layer, and 2048 for the leaf 
layer. For an average packet switch consumption of 2000 W, this totals to a 10240 KW power requirement. 
Replacing the core layer and spine layer with Optical Circuit switch devices of the same 64-port radix, we are 
trading 3072 packet switches that consume 6155 KW for 2048 Optical circuit switches that consume 24,5 KW. 
The total network power of the datacentre is reduced approximately 60%, 2x better than the goal.    

Achievement level: ++ 

Testbeds/simulators used: TB-R-3 

 
27 P-KPI 4.2 has been reformulated from “Execute cloud and edge workloads at least 50% on green energy, assuming green 
energy availability during 30% of the day on average in each datacentre location” to “Reduce the total operational carbon 
footprint of cloud/edge workloads by at least 15% compared to standard baselines. The original formulation refers to a 
metric and threshold which is hard/unrealistic to quantify given that datacentres are not connected to separate Green and 
Brown power supply sources but draw whichever energy is available from the grid. What varies (in time and by location) 
is the mix of Green and Brown energy sources used in electricity production. Moreover, whether the original formulation 
of the KPI could be achieved or not depends highly on workload characteristics, namely whether the workload consists of 
batch jobs which have relaxed deadlines and can be delayed, or interactive / real-time jobs which have more stringent 
deadlines. The new KPI focuses on the essence / end goal, which is the reduction of the carbon footprint, rather than the 
means/method to achieve this (how much green energy to use). 
28 P-KPI 4.3 has been reformulated from “Reduce network power consumption by 30% by exploiting optical circuit 
switching without increasing application-perceived latency” to “Reduce network power consumption by 30% by exploiting 
optical circuit switching, which reduces the required number of power-hungry electrical packet switches without 
introducing oversubscribed or longer network paths that can affect application performance”. This reformulation was done 
to clarify the metric used for evaluation. 
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5.4.4 P-KPI 4.4 Far-Edge network latency to gateway less than 10ms and packet failures lower than 10-7 
with a device density of 100 devices per gateway. 

We have prepared the Far-Edge gateway (NextGenGW) to handle more than 100 devices and evaluated its 
capability to manage application component deployment with such device density. Latency was measured 
considering the overhead NextGenGW interoperability feature adds to communication, disregarding the 
network overhead because that depends on network setup and on the number of hops between the Far-Edge 
device and the Node where NextGenGW is running. Considering this, with a cluster of 100 devices, the 
NextGenGW latency for 50 simultaneous read requests on the LwM2M object ‘Device’ of 50 different devices 
is 247 microseconds. The tests were performed with the NextGenGW running on an Intel NUC 13 Pro equipped 
with an Intel Core i3-1315U CPU, 16GB of RAM, and a 256GB NVMe SSD, running Ubuntu 22.04 LTS. We 
selected the LwM2M object ‘Device’ for the tests because it is the largest object in Kallisto, comprising 17 
properties.  

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-7 

5.4.5 P-KPI 4.5 True positive rate of network anomaly detection higher than 90% and permitted false 
positive rate lower than 5% for critical applications. 

The system leverages machine learning (ML) algorithms to analyse features extracted from network logs, such 
as Signal-to-Noise-Interference Ratio (SNIR), Received Signal Strength Indicator (RSSI), Packet Delivery 
Ratio (PDR), and bit rate, to identify patterns indicative of network anomalies. The ML-driven detection module 
achieved a true positive rate greater than 90% for detecting network anomalies while maintaining a false positive 
rate below 5% for critical applications. These results validate the model’s capability to reliably detect jamming 
attacks while minimising false alarms, ensuring actionable insights that trigger adaptation processes without 
unnecessary disruptions. A more sophisticated machine/deep learning model has been developed and trained on 
larger and more diverse datasets. The aim was to improve the accuracy and efficiency of real-time or near real-
time anomaly and attack detection, optimising the system's performance in practical scenarios. More specifically 
a Generative Adversarial Network (GAN) has been proposed and we implemented GANSec, published at 
ESORICS conference 2025.  The main advantages of GANSec concern its generalisation capability. Indeed, 
models trained exclusively on GANSec-generated data significantly outperformed all baseline methods on the 
unseen data.  

Achievement level: + 

Testbeds/simulators used: TB-R-2 

5.4.6 P-KPI 4.6 Reduced local data breakout latency at the edge by 10 milliseconds on a fully cloudified 
standalone 5G. 

The P-KPI 4.6 focused on automating the deployment and configuration of the User Plane Function (UPF) at 
the network edge, which was addressed through a thorough evaluation of different strategies. The first approach 
considered involved deploying UPFs on demand in datacentres without pre-deployed UPFs. However, this 
solution presented significant limitations. It did not allow the collection of critical parameters related to UPF 
resource consumption, which are essential for the accurate functioning of machine learning algorithms. 
Additionally, this strategy was deemed impractical, as operators typically have pre-deployed UPFs at the edge 
to ensure the continuity of network functions and performance. 

Given these challenges, we shifted our focus to a second approach, which leveraged the network’s slicing 
capabilities to configure pre-deployed UPFs. This approach not only met the project’s requirements but also 
enabled continuous resource monitoring through an integrated agent. The implemented configuration automated 
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the setup of 5G network slicing, as outlined in Requirement R7.4, ensuring efficient resource utilisation and 
network adaptability. A further advantage of this solution was its forward-looking design: most of the metrics 
collected by the agent are aligned with the 3GPP specifications for counters in a standalone 5G network. 
Although many vendors have not yet fully implemented these counters, having pre-deployed UPFs ensures that 
these metrics can be utilised as soon as they become available, thereby enhancing compatibility and network 
observability over time. 

As a result of this implementation, the project achieved a significant reduction in local data breakout latency, 
improving performance by 10 milliseconds in a fully cloudified standalone 5G network environment. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-1 

5.4.7 P-KPI 4.7 File access times decreased by at least 20%, and repair time after permanent storage 
location failure was less than 24 hours per TB of data. 

The baseline for file/object access time speedup is a static storage configuration, where erasure-coded fragments 
of objects are placed in fixed locations, selected when the bucket is created (industry standard configuration). 
In this P-KPI, we have demonstrated that monitoring the origin and magnitude of bucket traffic with an ML-
based component and dynamically adjusting the storage configuration results in faster downloads over time, for 
example, when the demand moves significantly across countries.  

We developed new system modules that enable traffic monitoring on a per-bucket basis and allow the user to 
define high-level performance goals and restrictions when the optimal storage policy is calculated, including 
geographical restrictions, GDPR compliance, regional outage resilience (spreading fragments more to protect 
against multiple cloud providers being affected by a regional network issue), cost limits and an arbitrarily 
configurable weights for a set of optimization targets (cheapest, fastest, closest to traffic). Our system updates 
the storage settings of enrolled buckets regularly, comparing the traffic of the last time period to the user-defined 
goals, and adjusting the storage policy if needed. 

The achievable speedup is well beyond 20% when the traffic characteristics change drastically over time. We 
measured improvements up to 84% when cross-continent migrations brought data thousands of kilometres 
closer to the new traffic origin. Regarding repair time, when a storage location failure is detected, the system is 
configured to launch one object migration job per second. Depending on the mean object size in the bucket, this 
typically results in 1-10 TB repaired per day. Note that we always store objects with redundancy, and permanent 
storage location failures are extremely rare; therefore, the failure of any single storage location does not render 
the bucket unavailable. The repair process takes place in the background, fully transparent to the user. 

Achievement level: ++ 

Testbed: TB-R-5 

5.4.8 P-KPI 4.8 Improved security and privacy for cloud and edge systems by at least 20% compared to 
traditional cybersecurity solutions on ENISA and NIST benchmarks. 

We have validated on the UTH testbed. Besides, we use Raspberry Pi 5 (8GB) as the simulator hardware since 
it includes an onboard power monitoring sensor, which means we can measure power without adding any 
external measurement hardware. For storage, we use a SanDisk High/Max Endurance microSD card as a solid 
and reliable choice for sustained operation. Finally, we use two units so we can validate multi-node scenarios, 
such as connectivity and interaction between devices. 

Our framework improves security and privacy for cloud and edge systems by operationalising ENISA and NIST 
guidance into a measurable evaluation scorecard and then demonstrating at least a 20% gain over a traditional 
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baseline that relies on static, rule/signature-driven monitoring and non-adaptive policies. Concretely, we map 
ENISA and NIST-recommended capabilities (e.g., secure communication, identity assurance, intrusion 
detection effectiveness, and resilience to evolving threats) to quantitative metrics collected from our deployed 
pipeline, including end-to-end encryption coverage and authentication integrity (mTLS with certificate 
rotation), anomaly/attack detection quality (precision/recall/F1 and false-positive rate), and responsiveness 
(mean time to detect and mean time to enforce mitigation via policy and resource control). Using Kyoto-style 
network traces and our edge testbed runs, the anomaly-detection-driven trust mechanism (OWAD combined 
with ML-based detectors and trust-score fusion) yields an F1 improvement of 26.4% over the baseline IDS 
configuration, reduces the false-positive rate by 23.1%, and shortens the mean time to detect by 31.7%. In 
comparison, the zero-trust service mesh enforces encrypted and authenticated service-to-service communication 
across the evaluated paths (100% coverage in our deployment). It enables trust-aware restriction of low-trust 
nodes to limit lateral movement and data exposure. When these dimensions are normalised and aggregated into 
a composite Security & Privacy Improvement Index aligned to the ENISA/NIST scorecard, the integrated 
solution achieves a 24.8% overall improvement compared to the traditional baseline, satisfying the “at least 
20%” requirement. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-8 

5.5 Realistic Model Training, Validation, and Evaluation 

5.5.1 P-KPI 5.1 Use 2 application-specific testbeds motivated by real-world scenarios. 

The testbed of the Smart Agriculture use-case has been motivated by real-world farming scenarios. The testbed 
consists of a tractor equipped with a computing and sensing device and a sprayer controller, and a drone 
equipped with onboard sensing and processing, both operating on real agricultural fields collaboratively. The 
MLSysOps framework and ML-based application management have been evaluated progressively using virtual 
setups, desk setups with real hardware, and a full field testbed under real environmental conditions, also 
considering realistic operational constraints, including variable lighting conditions that trigger safe mode 
operation, and wide-area connectivity. 

Similarly, the Smart City use-case testbeds are driven by the real-world operational needs of municipal 
infrastructure. The setup consists of two distinct clusters: a private testbed located at UBIW headquarters 
(monitoring a parking area), and a public testbed deployed in the Aveiro city centre (monitoring live street 
traffic). Both testbeds utilize real smart lampposts equipped with Nvidia Jetson edge nodes, cameras, and noise 
sensors. The MLSysOps framework was evaluated progressively, moving from virtual simulations and a 
calibrated lab replay setup to full-scale deployment in the city. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-APP-1, TB-APP-2  

5.5.2 P-KPI 5.2 Use at least 2 datacentre-class and 2 smart-/Far-Edge research testbeds in combination, 
covering resources and setups characteristic of all layers of the heterogeneous continuum. 

As a result of the combined efforts of UTH, NUBIS, and FhP, multiple heterogeneous experimental research 
testbeds were successfully established and used in combination, including at least two datacentre-class testbeds 
and two smart/Far-Edge testbeds, enabling multiple infrastructure configurations that span all layers of the 
continuum. The infrastructure comprised datacentre server machines equipped with datacentre-class GPUs, 
edge workstations and servers, single-board computers including multiple versions of Raspberry Pi and 
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NVIDIA Jetson platforms, as well as resource-constrained hardware based on microcontrollers equipped with 
diverse peripherals such as cameras and environmental sensors (e.g., temperature and noise sensors), and 
supporting the use of hardware accelerators including GPUs and FPGAs where available. The complete system 
was managed through the MLSysOps framework, ensuring unified orchestration and monitoring across 
heterogeneous resources. The testbed setups at UTH and NUBIS were configured in various ways to include 
both datacentre-class and smart/Far-Edge deployments, while the FhP infrastructure primarily supported Smart-
Edge configurations based on microcontroller platforms, with UTH also integrating microcontroller-based 
devices into its experimental environment. 

Achievement level: ++ 

Testbeds/Simulators used:  TB-R-5, TB-R-6, TB-R-7 

5.5.3 P-KPI 5.3 Develop/extend at least 2 simulators, one for datacentre and one for edge environments, 
and use them for controlled scale-out experimentation and data collection. 

Five different simulators have been extended/realised, which are described in the public deliverable D4.3 “Final 
Version of System Simulators”. They have been used to perform experiments and data collection for system 
configurations with a large number of nodes for both cloud-oriented and edge-oriented scenarios. Also, the 
drone simulation environment has been used extensively to test the framework for the smart agriculture use 
case.  

Achievement level: ++ 

Testbeds/Simulators used: SIM-1, SIM-2, SIM-3  

5.5.4 P-KPI 5.4 Openly share at least 10 pre-trained ML models with the community and the respective 
training, validation, and evaluation datasets. 

Various ML models have been developed for different purposes and are described in D4.4 “Final Version of AI 
Architecture and ML Models”. In detail: (1) An ML model was developed to detect jamming attacks within a 
5G network by leveraging relevant features extracted from traces and logs generated by the UE and the gNB. 
(2) ML models were developed to perform device authentication based on the wireless communication 
signature/fingerprint of a device by analysing signals and raw I/Q samples. (3) An XGBRegressor model was 
developed based on the XGBoost library, which implements gradient-boosted decision trees to predict data 
transfer speed between storage gateways and the underlying data fragment storage regions. (4) A Deep RL agent 
with access to a network of deep neural networks was developed to manage the VMs of several hosts of a 
datacentre depending on the resource demands. (5) An ML model based on a shared attention Gated Recurrent 
Unit (GRU) encoder, a shared Attention-GRU encoder, a utilisation forecasting decoder, and a lifetime 
prediction head was developed to predict the requested resources and volatility of Tasks/VMs in datacentres. 
(6) An RL model that dynamically optimizes FPGA hardware accelerators in a Multi-processor SoC FPGA. (7) 
An ML model that leverages cluster state information to predict system behaviour and enhance job scheduling 
in a data centre using optical circuit switches. (8) An ML model was developed to decide the placement of the 
UPF function in a 5G infrastructure. (9) Advanced ML models, such as KitNET and DeepLog, were used to 
detect anomalies in node operation based on various system-level metrics, such as CPU, memory, and network 
utilisation. (10) An LSTM model was developed to predict the need for an activity recognition model to run on 
the smart city use case. (11) An XGBoost model was developed to predict the need for the engagement of a 
drone on the smart agriculture use case. These models and the related datasets will be shared with the community 
by the end of the project using the FAIR principles and the Zenodo platform.  

Achievement level: ++ 

Testbeds/simulators used: TB-APP-1, TB-APP-2, TB-R-2, TB-R-5, SIM-2, SIM-4 
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6 KPI Perspective on Overall Project Status 
This section summarises the overall status of the project from the KPI perspective. The section is divided into 
requirements groups and project objectives, each presenting the status of the requirements groups and project 
objectives KPI following a tabular format. Each table lists the respective KPIs and their status using the same 
notation used in the sections 4 and 5 to capture the achievement level: “o” means that the KPI has not been 
achieved yet; “+” means that the KPI has been partially achieved; “++” means that the KPI has been fully 
achieved. The testbeds and simulators are identified by labels that correspond to the descriptions in Appendix 
A. 

6.1 Requirement Groups KPIs 

The overall status of the requirement group KPIs is given in Table – 10. This highlights that 100% of the RG-
KPIs were addressed, of which ~97% were fully achieved.   

Table – 10 Status of KPIs for Requirement Groups. 

Requirement 
Group RG-KPIs Status 

Testbed / 
Simulator 

RG1 

(1.1) System infrastructure description can capture at least the 
infrastructure of MLSysOps application testbeds and research 
testbeds. 

++ 

TB-APP-1  
TB-APP-2 

TB-R-5 
TB-R-6  
TB-R-7 

(1.2) Describe application components so that they can be freely 
placed in at least two different layers of the continuum and linked 
with RG-KPI 2.1 and RG-KPI 2.2. 

++ TB-R-5 

RG2 

(2.1) Deploy an application with at least three components so that at 
least one component is placed at the Far-Edge, Smart-Edge, and 
Edge/Cloud Infrastructure. 

++ 
TB-R-5 
TB-R-7 

(2.2) Deploy application components on at least two types of Smart-
Edge and two types of Far-Edge nodes featuring different CPUs/ 
Micro Controller Units (MCU) and/or sensors. 

++ 
TB-R-5 
TB-R-7 

(2.3) Have a deployment where at least two application components 
can interact with each other over either 4G/Internet, Wi-Fi, IEEE 
802.15.4, or Bluetooth links. 

++ TB-R-5 
TB-R-7 

(2.4) The initial deployment plan is close to optimal, i.e., within 10% 
vs. a plan produced by an offline/oracle algorithm. 

++ TB-R-5 
SIM-2 

(2.5) When changes in system state and application execution profile 
are detected, produce/execute an adapted deployment plan close to 
optimal, i.e., within 10% vs. a plan produced by an offline/oracle 
algorithm. 

++ 
TB-R-5 
SIM-2 

RG3 

(3.1) Different combinations of power configurations spanning the 
energy efficiency space are supported for at least one type of 
Cloud/Edge Infrastructure node, Smart-Edge node, and Far-Edge 
node. 

++ TB-R-5 
TB-R-7 
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Requirement 
Group RG-KPIs Status 

Testbed / 
Simulator 

(3.2) Offer at least three different function implementations (CPU 
Only, GPU, Field Programmable Gate Arrays (FPGA)) that are 
transparently invoked by at least two different application 
components. 

++ TB-R-5 

(3.3) The performance overhead for the transparent usage of the 
acceleration hardware should be low (< 5% vs. a hardwired 
invocation of the respective implementation). 

++ TB-R-5 

(3.4) Offer acceleration support for at least one high-level ML 
framework (TensorFlow or PyTorch) for inference and training. ++ 

TB-R-5 
TB-R-6 

(3.5) The initial node level and local application configuration are 
close to optimal, within 10%, vs. a configuration produced by an 
offline/oracle algorithm. 

++ TB-R-5 

(3.6) When changes in the local node state and application execution 
profile are detected, the adapted configuration falls within a 10% 
margin vs. a plan produced by an offline/oracle algorithm. 

++ TB-R-5 

RG4 

(4.1) Integrate at least 20 cloud storage locations across at least 4 
commercial cloud providers. ++ TB-R-5 

(4.2) Share availability and performance measurements with the 
(ML-driven) policies within 60 minutes of the data transfer. 

++ TB-R-5 

(4.3) Record the availability and performance of all cloud and edge 
storage locations at least once every 6 hours. 

++ TB-R-5 

(4.4) Share file access events with the (ML-driven) policies within 15 
minutes of the event. ++ TB-R-5 

(4.5) Realize the storage representation changes decided by the (ML-
driven) policies in a maximum of 15 minutes per MB of data 
affected. 

++ TB-R-5 

RG5 

(5.1) Reputation/credit calculation is performed in real-time, within a 
few milliseconds. The calculation aims to consume <=5% of the 
energy consumption during normal application execution. The 
bandwidth cost is similar to the cost of a normal application 
communication message (with or without authentication, the 
bandwidth performance remains similar). Furthermore, resource and 
application allocation and policy adjustments related to credit should 
be performed on the same scale as above. 

++ TB-R-8 

(5.2) The authentication should be 100% accurate, i.e., once an entity 
passes the authentication, it should be 100% what it claims to be. 

++ TB-R-8 
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Requirement 
Group RG-KPIs Status 

Testbed / 
Simulator 

(5.3) The time required to adapt the encryption/decryption to the trust 
level of nodes will be a few milliseconds, and there should not be 
more than 5% energy cost compared to normal application execution. 
The extra bandwidth the encryption brings will be restricted by the 
15-20% expansion of the original communication data. 

++ TB-R-8 

RG6 

(6.1) Manage a network with at least 3 edge nodes (one mobile 
Smart-Edge node and some fixed Smart-Edge nodes) with latency 
kept below 10 milliseconds and Packet Delivery Ratio (PDR) higher 
than 90%. 

++ TB-R-2 

(6.2) Manage a network with at least 3 edge nodes (one mobile 
Smart-Edge node and some fixed Smart-Edge nodes) with anomalies 
detected with an accuracy higher than 90% and detection time lower 
than 100 milliseconds. 

++ TB-R-2 

RG7 

(7.1) Latency is improved with the autonomic changes in the 
connectivity path between two or more interacting application 
components (core network NF). If we consider a switch between a 
UPF placed in Milan vs. another one placed in London, we can 
expect a difference of up to 20 ms. 

++ TB-R-1 

RG8 

(8.1) The network management policy dynamically switches between 
at least two network topologies (Fat-Tree, 3D-Torus) depending on 
the arriving workload mix, excluding switching layers that are not 
required and switching off the relevant devices. 

++ TB-R-3 

(8.2) The network management policy dynamically changes at least 
one parameter of the physical network (e.g., bandwidth steering). ++ TB-R-3 

(8.3) Use at most 2 switching layers to execute application workloads 
involving Deep Learning Recommendation Models (DRLM) and 
Large Language Models (LLM). (R8.1, R8.2). 

++ TB-R-3 

(8.4) The network power consumption is reduced by 30% due to the 
power down of the network elements of the bypassed layer. 

++ TB-R-3 

(8.5) The network port-to-port latency is reduced by 25% with the 
use of a switching layer bypass. 

+ TB-R-3 

(8.6) Arriving workloads are expected to be 100% accommodated 
(job scheduling and topology reconfiguration on an AI Cluster) based 
on the decisions generated by the MLSysOps framework. 

++ SIM-4 

RG9 

(9.1) Exploit at least 75% of the green energy available to 
datacentres. 

++ SIM-2 

(9.2) Achieve operators’ costs within 5% of those of adaptive, non-
ML state-of-the-art policies. 

++ SIM-2 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        107 

Requirement 
Group RG-KPIs Status 

Testbed / 
Simulator 

RG10 

(10.1) At least two different models are used interchangeably without 
modifying the underlying resource management and configuration 
mechanisms. 

++ TB-R-5 

(10.2) The effectiveness of continual learning shall improve system 
performance whenever model drifting is detected. 

++ SIM-2 

(10.3) Performance isolation will be achieved between the running 
application and the ML model (training/inference). Application QoS 
targets are met, although resources are used for applications and 
model re-training / continual learning mechanisms. 

++ TB-R-5 

(10.4) Explanation mechanisms provide sufficient justifications for 
every decision made by an ML-based mechanism. 

++ TB-R-5 

(10.5) System and running applications continue working even when 
ML-driven decision-making is deactivated. 

++ TB-R-5 

(10.6) All of the relevant telemetry data is successfully captured and 
processed, using data-centric AI techniques, to produce summaries of 
good quality that can be used as experience memory and be made 
available for further analysis or utilization. 

++ 
SIM-2 

 TB-R-5 

6.2 Project Objectives KPIs 

The overall status of the project-level KPIs is given in Table 11. This highlights that 100% of the P-KPIs were 
addressed, of which 92% were fully achieved. The testbeds and simulators are presented as an identifier that 
can be mapped to a description included in the Appendix A.  

Table 11 – Status of KPIs for Project Objectives. 

Project 
Objectives PO-KPIs Status 

Testbed / 
Simulator 

PO1 

(1.1) At least 2 real-world applications transparently combine services 
from cloud and edge layers and/or different infrastructure providers. ++ 

TB-APP-1  
TB-APP-2 

(1.2) Deployment and orchestration on at least 4 families of devices 
spanning from cloud to Far-Edge. ++ 

TB-R-5 
TB-R-6  
TB-R-7 

(1.3) Support for at least 2 different cloud/edge resource provisioning 
/allocation/orchestration frameworks. ++ 

TB-R-5 
TB-R-6  

(1.4) Support at least 2 AI policies for any managed resource without 
changes to the management mechanisms. ++ 

SIM-2 
TB-R-5 

(1.5) Support systems with at least 250 nodes across the continuum 
(validated through simulation). 

++ SIM-1 
SIM-2 



MLSysOps      D5.3 Final Integration and Evaluation Report 

        108 

Project 
Objectives PO-KPIs Status 

Testbed / 
Simulator 

(1.6) Sufficiently lightweight agent implementation, targeting 
memory-limited (less than 1GB) Smart-Edge devices and agent 
coordination overhead of less than 10% of application data traffic. 

++ TB-R-4 

PO2 

(2.1) Explainable ML models with decision quality within 5% of 
traditional state-of-the-art resource management algorithms. 

++ TB-R-5 

(2.2) Eliminate the effect of model drifting without any perceivable 
reduction in the QoS of applications in the presence of system slack. ++ SIM-2 

(2.3) Reduce the effect of model drifting at a QoS penalty of less than 
5% for running applications in the presence of resource pressure. ++ SIM-2 

PO3 

(3.1) Package and deploy in the continuum applications consisting of 
at least 10 components, transparently and on-demand, targeting 4 
execution enclaves (VMs, microVMs, unikernels, containers) at 
comparable latency with state-of-the-art standalone enclave generation 
methods. 

++ 
TB-R-5 
TB-R-6 

(3.2) Support ARM Cortex-M family devices as legitimate application 
deployment and resource orchestration targets. ++ 

TB-R-5 
TB-R-7 

(3.3) Support resource-constrained devices (Class 1 as defined by 
IETF RFC 7228) over constrained networks (as defined by IETF RFC 
7228) and reduce reprogramming time by at least 20% compared to a 
full firmware update. 

++ TB-R-7 

(3.4) Enable the use of at least three (3) execution devices (cloud GPU 
accelerators, edge CPUs, edge GPU accelerators) by a single 
application binary. 

++ 
TB-R-5 
TB-R-6 

PO4 

(4.1) Reduce the IT energy footprint of 2 real-world use cases by at 
least 20%.  + 

TB-APP-1  
TB-APP-2 

(4.2) Reduce the total operational carbon footprint of cloud/edge 
workloads by at least 15% compared to standard baselines. 

++ SIM-2 
TB-R-5 

(4.3) Reduce network power consumption by 30% by exploiting 
optical circuit switching without increasing application-perceived 
latency. 

++ TB-R-3 

(4.4) Far-Edge network latency to the gateway is less than 10ms, and 
packet failures are lower than 10-7, with a device density of 100 
devices per gateway. 

++ TB-R-7 

(4.5) The true positive rate of network anomaly detection is higher 
than 90%, and the permitted false positive rate is lower than 5% for 
critical applications. 

+ TB-R-2 
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Project 
Objectives PO-KPIs Status 

Testbed / 
Simulator 

(4.6) Reduced local data breakout latency at the edge by 10 
milliseconds on fully cloudified standalone 5G. ++ TB-R-1 

(4.7) File access times decreased by at least 20%, and repair time after 
permanent storage location failure was less than 24 hours per TB of 
data. 

++ TB-R-5 

(4.8) Improved security and privacy for cloud and edge systems by at 
least 20% compared to traditional cybersecurity solutions on ENISA 
and NIST benchmarks. 

++  
TB-R-8 

PO5 

(5.1) Use 2 application-specific testbeds motivated by real-world 
scenarios.  

++ 
TB-APP-1  
TB-APP-2 

(5.2) Use at least 2 datacentre-class and 2 smart-/ Far-Edge research 
testbeds in combination, covering resources and setups characteristic 
of all layers of the heterogeneous continuum. 

++ 
TB-R-5 
TB-R-6 
TB-R-7 

(5.3) Develop/extend at least 2 simulators, one for datacentre and one 
for edge environments, and use them for controlled scale-out 
experimentation and data collection. 

++ 
SIM-1 
SIM-2 
SIM-3 

(5.4) Openly share at least 10 pre-trained ML models with the 
community and the respective training, validation, and evaluation 
datasets. 

++ 

TB-APP-1  
TB-APP-2 

TB-R-2 
TB-R-5 
SIM-2 
SIM-4 
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7 Conclusion and Outlook 
This document has summarized the final integration and evaluation of the MLSysOps framework and how it 
was used to support the use-cases (UCs). Key integration milestones including the implementation of a three-
level agent hierarchy, the support for heterogeneous nodes from cloud servers to edge devices, and the 
integration of ML-driven autonomic policies have been successfully validated. 

Beyond the core framework integration, the project has delivered a comprehensive suite of specialized 
mechanisms and ML-based solutions addressing diverse aspects of continuum management. These include ML-
driven storage optimization, trust-aware security with anomaly detection, hardware acceleration frameworks 
(vAccel), carbon-aware orchestration policies (CLEAR, PeakLife), network management across wireless edge 
and 5G infrastructures, optical switching for datacentres, and explainable ML architectures with drift detection. 
Each mechanism operates independently while integrating seamlessly through the MLConnector API and agent 
coordination layer, demonstrating the framework's extensibility and modularity. 

The framework’s efficacy was demonstrated through two real-world use cases. In the smart city scenario, the 
system achieved significant energy savings by proactively managing computer vision components based on 
noise forecasting. In the smart agriculture scenario, the framework successfully synchronized tractor and drone 
operations, significantly reducing safe-mode operation time and improving herbicide application efficiency. 

The project's overall success is quantified by its final KPI achievement levels: 

• Requirement Group (RG) KPIs: 100% addressed, with 97% fully achieved (++). 
• Project Objectives (P) KPIs: 100% addressed, with 92% confirmed as fully achieved (++). 

These results confirm that both the integrated framework and its constituent mechanisms are technically mature 
and robust enough for deployment in diverse environments. The modular design ensures that individual 
components can be adopted independently or in combination, providing flexibility for future research and 
industrial applications.  
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Appendix A. Simulation Environments and Testbeds 
To map each RG to a testbed and a simulator, Table 9 summarizes the simulation and testbed identifiers, the 
responsible partner, a brief description, and the deliverable or section where a more detailed explanation can be 
found. In this context, TB-APP denotes an application testbed, TB-R refers to a research testbed, and SIM 
indicates a simulation environment. 

Table 12: Summary of Simulation Environments/Testbeds and responsible partners. 

Simulation/Testbed 
Identifier  

Responsible 
Partner(s)  

Description Document 
/Section(s) 

TB-APP-1  AUG Smart Agriculture Application Testbed  D5.3/3.3 
TB-APP-2 UBIW Smart City Application Testbed D5.3/3.2 
TB-R-1 NTT Data 5G Research Testbed D5.1/4 
TB-R-2  INRIA Wireless Edge Research Testbed  D5.1/5 
TB-R-3  MLNX Optical Networks Research Testbed  D5.1/7 
TB-R-4  UNICAL Far-Edge/Smart-Edge Research Testbed  D5.1/6 
TB-R-5 UTH Drone-edge-cloud Research Testbed  D5.1/8 
TB-R-6 NUBIS HW Acceleration Testbed1  NA 
TB-R-7 FhP Far-Edge Constrained Network Research Testbed2 NA 
TB-R-8 TUD Edge anomaly detection testbed3 NA 
SIM-1  UNICAL-INRIA  Edge Nodes and Network Simulation Environment D4.3/4-5 
SIM-2  UTH  Cloud Datacentre Simulation Environment D4.3/2 
SIM-3  UTH  Drone Simulation Environment D4.3/3 
SIM-4  MLNX  Optical Switch Environment  D4.3/6  

 

 

 

 

 

1 Used in addition to the official project testbeds to provide access to nodes with HW acceleration resources 
2 Used in addition to the official project testbeds to provide access to resource-constrained nodes supporting different radio 
protocols (BLE, 802.15.4, and Wi-Fi) 
3 Used in addition to the official project testbeds to provide embedded nodes for anomaly detection experiments. 


